Frontiers of Physics in China

, Volume 5, Issue 4, pp 369–379 | Cite as

First-principles modelling of scanning tunneling microscopy using non-equilibrium Green’s functions

  • Haiping Lin (林海平)
  • Janosch M. C. Rauba
  • Kristian S. Thygesen
  • Karsten W. Jacobsen
  • Michelle Y. Simmons
  • Werner A. Hofer
Review Article


The investigation of electron transport processes in nano-scale architectures plays a crucial role in the development of surface chemistry and nano-technology. Experimentally, an important driving force within this research area has been the concurrent refinements of scanning tunneling microscopy (STM) techniques. The theoretical treatment of the STM operation has traditionally been based on the Bardeen and Tersoff-Hamann methods which take as input the single-particle wave functions and eigenvalues obtained from finite cluster or slabs models of the surface-tip interface. Here, we present a novel STM simulation scheme based on non-equilibrium Green’s functions (NEGF) and Wannier functions which is both accurate and very efficient. The main novelty of the scheme compared to the Bardeen and Tersoff-Hamann approaches is that the coupling to the infinite (macroscopic) electrodes is taken into account. As an illustrating example we apply the NEGF-STM method to the Si(001)-(2×1):H surface with sub-surface P doping and discuss the results in comparison to the Bardeen and Tersoff-Hamann methods.


STM simulation non-equilibrium Green’s function Wannier function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Phys. Rev. Lett., 1982, 49: 57CrossRefADSGoogle Scholar
  2. 2.
    G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Phys. Rev. Lett., 1983, 50: 120CrossRefADSGoogle Scholar
  3. 3.
    J. A. Heinrich, C. P. Lutz, J. A. Gupta, and D. M. Eigler, Science, 2002, 298: 1381CrossRefADSGoogle Scholar
  4. 4.
    C. Joachim, J. K. Gimzewski, and A. Aviram, Nature, 2000, 408: 541CrossRefADSGoogle Scholar
  5. 5.
    H. C. Manoharan, C. P. Lutz, and D. M. Eigler, Nature, 2000, 403: 512CrossRefADSGoogle Scholar
  6. 6.
    S.-W. Hla, L. Bartels, G. Meyer, and K.-H. Rieder, Phys. Rev. Lett., 2000, 85: 2777CrossRefADSGoogle Scholar
  7. 7.
    S.-W. Hla and K.-H. Rieder, Ann. Rev. Phys. Chem., 2003, 54: 307CrossRefADSGoogle Scholar
  8. 8.
    M. Fuechsle, S. Mahapatra, F. A. Zwanenburg, M. Friesen, M. A. Eriksson, and M. Y. Simmons, Nature Nanotechnology, 2010, 5: 502CrossRefADSGoogle Scholar
  9. 9.
    J. Tersoff and D. R. Hamann, Phys. Rev. B, 1981, 31: 805CrossRefADSGoogle Scholar
  10. 10.
    J. Tersoff and D. R. Hamann, Phys. Rev. Lett., 1985, 50: 1988Google Scholar
  11. 11.
    W. A. Hofer, G. Ritz, W. Hebenstreit, M. Schmid, P. Varga, J. Redinger, and R. Podloucky, Surf. Sci. Lett., 1998, 405: L514CrossRefGoogle Scholar
  12. 12.
    J. Bardeen, Phys. Rev. Lett., 1961, 6: 57CrossRefADSGoogle Scholar
  13. 13.
    W. A. Hofer and J. Redinger, Surf. Sci., 2000, 447: 51CrossRefADSGoogle Scholar
  14. 14.
    K. S. Thygesen and K. W. Jacobsen, Chem. Phys., 2005, 319: 111CrossRefADSGoogle Scholar
  15. 15.
    W. A. Hofer, A. S. Foster, and A. L. Shluger, Rev. Mod. Phys., 2003, 75: 1287CrossRefADSGoogle Scholar
  16. 16.
    Z. T. Deng, H. Lin, W. Ji, L. Gao, X. Lin, Z. H. Cheng, X. B. He, J. L. Lu, D. X. Shi, W. A. Hofer, and H. J. Gao, Phys. Rev. Lett., 2006, 96: 156102CrossRefADSGoogle Scholar
  17. 17.
    A. Calzolari, N. Marzari, I. Souza, and M. B. Nardelli, Phys. Rev. B, 2004, 69: 035108CrossRefADSGoogle Scholar
  18. 18.
    G. H. Wannier, Phys. Rev., 1937, 52: 191zbMATHCrossRefADSGoogle Scholar
  19. 19.
    N. Marzari and D. Vanderbilt, Phys. Rev. B, 1997, 56: 12847CrossRefADSGoogle Scholar
  20. 20.
    K. S. Thygesen, L. B. Hansen, and K. W. Jacobsen, Phys. Rev. Lett., 2005, 94: 026405CrossRefADSGoogle Scholar
  21. 21.
    K. S. Thygesen, L. B. Hansen, and K. W. Jacobsen, Phys. Rev. B, 2005, 72: 125119CrossRefADSGoogle Scholar
  22. 22.
    K. S. Thygesen, Phys. Rev. B, 2006, 73: 035309CrossRefADSGoogle Scholar
  23. 23.
    C. J. Chen, Introduction to Scanning Tunnelling Microscopy, New York: Oxford University Press, 1993Google Scholar
  24. 24.
    S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge: Cambridge University Press, 1995Google Scholar
  25. 25.
    M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas, Phys. Rev. B, 1985, 31: 6207CrossRefADSGoogle Scholar
  26. 26.
    K. Palotás and W. A. Hofer, J. Phys.: Condens. Matter, 2005, 17: 2705CrossRefADSGoogle Scholar
  27. 27.
    A. S. Foster and W. A. Hofer, Scanning Probe Microscopy, Spring Series in NanoScience and Technology, Springer, 2006Google Scholar
  28. 28.
    W. A. Hofer and A. J. Fisher, Phys. Rev. Lett., 2003, 91: 036803CrossRefADSGoogle Scholar
  29. 29.
    W. A. Hofer and A. Garcia-Lekue, Phys. Rev. B, 2005, 71: 085401CrossRefADSGoogle Scholar
  30. 30.
    W. A. Hofer, A. Garcia-Lekue, and H. Brune, Chem. Phys. Lett., 2004, 397: 354CrossRefADSGoogle Scholar
  31. 31.
    C. Caroli, R. Combescot, P. Nozieres, and D. Saint-James, Journal of Physics C, 1971, 4: 916CrossRefGoogle Scholar
  32. 32.
    T. E. Feuchtwang, Phys. Rev. B, 1974, B10: 4135CrossRefADSGoogle Scholar
  33. 33.
    T. E. Feuchtwang, Phys. Rev. B, 1974, 10: 4121CrossRefADSGoogle Scholar
  34. 34.
    T. E. Feuchtwang, Phys. Rev. B, 1976, 13: 517CrossRefADSGoogle Scholar
  35. 35.
    Y. Meir and N. S. Wingreen, Phys. Rev. Lett., 1992, 68: 2512CrossRefADSGoogle Scholar
  36. 36.
    H. Hauge and A. P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors, Springer Series in Solid-State Physics, Springer, 1996Google Scholar
  37. 37.
    F. Flores, F. Guinea, C. Tejedor, and E. Louis, Phys. Rev. B, 1983, 28: 4397CrossRefADSGoogle Scholar
  38. 38.
    K. Flensberg and H. Bruus, Many-Body Quantum Theory in Condensed Matter Physics, Chapter 8, New York: Oxford University Press, 2004Google Scholar
  39. 39.
    S. Garcia-Gil, A. Garcia, N. Lorente, and P. Ordejon, Phys. Rev. B, 2009, 79: 075441CrossRefADSGoogle Scholar
  40. 40.
    L. Liu, J. Yu, and J. W. Lyding, Appl. Phys. Lett., 2001, 78: 386CrossRefADSGoogle Scholar
  41. 41.
    L. Liu, J. Yu, and J. W. Lyding, IEEE Trans. Nanotechnol., 2002, 1: 176CrossRefADSGoogle Scholar
  42. 42.
    G. W. Brown, H. Grube, and M. E. Hawley, Phys. Rev. B, 2004, 70: 121301CrossRefADSGoogle Scholar
  43. 43.
    L. Oberbeck, N. J. Curson, T. Hallam, M. Y. Simmons, and R. G. Clark, Thin Solid Films, 2004, 464: 23CrossRefADSGoogle Scholar
  44. 44.
    J. W. Lyding, T. C. Shen, J. S. Hubacek, J. R. Tucker, and G. C. Abeln, Appl. Phys. Lett., 1994, 64: 2010CrossRefADSGoogle Scholar
  45. 45.
    S. R. Schofield, N. J. Curson, M. Y. Simmons, F. J. Rueß, T. Hallam, L. Oberbeck, and R. G. Clark, Phys. Rev. Lett., 2003, 91: 136104CrossRefADSGoogle Scholar
  46. 46.
    F. J. Ruess, L. Oberbeck, M. Y. Simmons, K. E. J. Goh, A. R. Hamilton, T. Hallam, S. R. Schofield, N. J. Curson, and R. G. Clark, Nano Lett., 2004, 4: 1969CrossRefADSGoogle Scholar
  47. 47.
    A. Fuhrer, M. Fchsle, T. C. G. Reusch, B. Weber, and M. Y. Simmons, Nano Lett., 2009, 9: 707CrossRefADSGoogle Scholar
  48. 48.
    J. L. O’Brien, S. R. Schofield, M. Y. Simmons, R. G. Clark, A. S. Dzurak, N. J. Curson, B. E. Kane, N. S. McAlpine, M. E. Hawley, and G. W. Brown, Phys. Rev. B, 2001, 64: 161401(R)ADSGoogle Scholar
  49. 49.
    G. Kresse and J. Hafner, Phys. Rev. B, 1993, 47: 558CrossRefADSGoogle Scholar
  50. 50.
    G. Kresse and J. Hafner, Phys. Rev. B, 1994, 49: 14251CrossRefADSGoogle Scholar
  51. 51.
    G. Kresse and J. Furthmüller, Comput. Mater. Sci., 1996, 6: 15CrossRefGoogle Scholar
  52. 52.
    G. Kresse and J. Furthmüller, Phys. Rev. B, 1996, 54: 11169CrossRefADSGoogle Scholar
  53. 53.
    J. J. Mortensen, L. B. Hansen, and K. W. Jacobsen, Phys. Rev. B, 2005, 71: 035109CrossRefADSGoogle Scholar
  54. 54.
    J. Enkovaara, et al., J. Phys.: Condens. Matter (in press)Google Scholar
  55. 55.
    W. A. Hofer, Progr. Surf. Sci., 2003, 71: 147CrossRefADSGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Haiping Lin (林海平)
    • 1
  • Janosch M. C. Rauba
    • 2
  • Kristian S. Thygesen
    • 2
  • Karsten W. Jacobsen
    • 2
  • Michelle Y. Simmons
    • 3
  • Werner A. Hofer
    • 1
  1. 1.Surface Science Research CentreThe University of LiverpoolLiverpoolUK
  2. 2.Center for Atomic-scale Materials DesignTechnical University of DenmarkLyngbyDenmark
  3. 3.Centre of Quantum Computer Technology, School of PhysicsThe University of New South WalesSydneyAustralia

Personalised recommendations