Frontiers of Physics in China

, Volume 5, Issue 3, pp 319–323 | Cite as

A broadband simplified free space cloak realized by nonmagnetic dielectric cylinders

  • Di Bao (鲍迪)
  • Efthymios Kallos
  • Wen-xuan Tang (汤文轩)
  • Christos Argyropoulos
  • Yang Hao (郝阳)
  • Tie-jun Cui (崔铁军)
Research Article

Abstract

In this paper, the properties of cylindrical high permittivity dielectric particles are studied. A design for broadband reduction of the scattering signature of metallic objects is proposed by implementing simplified ground-plane cloaking schemes. The devices are functional in the presence of a ground plane as well as in free space ranging from 4 GHz to 10 GHz. The required dielectric map for the cloak is achieved by means of manipulating the dimensions of the periodically distributed dielectric cylinders embedded in a host medium with a permittivity close to one. The scattering reduction effects are verified through simulation results. The proposed all dielectric cloaks are advantageous over other schemes due to their non-dispersive nature, the broad bandwidth, the low loss, and the ease of fabrication.

Keywords

cloak dielectric cylinders FFT gradient index material 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. B. Pendry, D. Schurig, and D. R. Smith, Science, 2006, 312: 1780CrossRefMathSciNetADSGoogle Scholar
  2. 2.
    D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science, 2006, 314: 977980CrossRefGoogle Scholar
  3. 3.
    J. Li and J. Pendry, Phy. Rev. Lett., 2008, 101: 203901CrossRefADSGoogle Scholar
  4. 4.
    R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, Science, 2009, 323: 366CrossRefADSGoogle Scholar
  5. 5.
    T. Z. G. B. Jason Valentine, Jensen Li, and X. Zhang, Nat. Mater., 2009, 8(568): 10Google Scholar
  6. 6.
    L. Gabrielli, J. Cardenas, C. Poitras, and M. Lipson, Nature Photonics, 2009, 3: 461CrossRefADSGoogle Scholar
  7. 7.
    H. Ma, W. Jiang, X. Yang, X. Zhou, and T. Cui, Opt. Express, 2009, 17: 19947CrossRefADSGoogle Scholar
  8. 8.
    E. Kallos, C. Argyropoulos, and Y. Hao, Phys. Rev. A, 2009, 79: 63825CrossRefADSGoogle Scholar
  9. 9.
    J. Lee, J. Blair, V. Tamma, Q. Wu, S. Rhee, C. Summers, and W. Park, Opt. Express, 2009, 17: 12922CrossRefADSGoogle Scholar
  10. 10.
    C. Walter, Antennas and Propagation, IRE Transactions on, 1960, 8: 508Google Scholar
  11. 11.
    K. Sato and H. Ujiie, Electronics & Communications in Japan, Part I: Communications (English Translation of Denshi Tsushin Gakkai Ronbunshi), 2002, 85: 1CrossRefGoogle Scholar
  12. 12.
    L. Rayleigh, Phil. Mag., 1892, 34: 205Google Scholar
  13. 13.
    L. Lewin, J. Inst. Elec. Eng., 1947, 94: 65Google Scholar
  14. 14.
    D. Smith, D. Vier, T. Koschny, and C. Soukoulis, Phys. Rev. E, 2005, 71: 036617CrossRefADSGoogle Scholar
  15. 15.
    A. Scher and E. Kuester, Metamaterials, 2009, 3: 44CrossRefADSGoogle Scholar
  16. 16.
    N. Padilla, Opt. Express, 2009, 17: 14872CrossRefADSGoogle Scholar
  17. 17.
    D. Roberts, N. Kundtz, and D. Smith, Opt. Express, 2009, 17: 16535CrossRefADSGoogle Scholar
  18. 18.
    R. Liu, Q. Cheng, J. Chin, J. Mock, T. Cui, and D. Smith, Opt. Express, 2009, 17: 21030CrossRefGoogle Scholar
  19. 19.
    D. Smith, S. Schultz, P. Markoš, and C. Soukoulis, Phys. Rev. B, 2002, 65: 195104CrossRefADSGoogle Scholar
  20. 20.
    J. Kim and A. Gopinath, Phys. Rev. B, 2007, 76: 115126CrossRefADSGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Di Bao (鲍迪)
    • 1
  • Efthymios Kallos
    • 1
  • Wen-xuan Tang (汤文轩)
    • 1
  • Christos Argyropoulos
    • 1
  • Yang Hao (郝阳)
    • 1
  • Tie-jun Cui (崔铁军)
    • 2
  1. 1.Department of Electronic Engineering, Queen MaryUniversity of LondonLondonUK
  2. 2.State Key Laboratory of Millimeter Waves, Department of Radio EngineeringSoutheast UniversityNanjingChina

Personalised recommendations