Frontiers of Physics in China

, Volume 5, Issue 1, pp 107–122 | Cite as

Aquantitative assessment of stochastic electrodynamics with spin (SEDS): Physical principles and novel applications

  • Giancarlo Cavalleri
  • Francesco Barbero
  • Gianfranco Bertazzi
  • Eros Cesaroni
  • Ernesto Tonni
  • Leonardo Bosi
  • Gianfranco Spavieri
  • George T. Gillies
Article

Abstract

Stochastic electrodynamics (SED) without spin, denoted as pure SED, has been discussed and seriously considered in the literature for several decades because it accounts for important aspects of quantum mechanics (QM). SED is based on the introduction of the nonrenormalized, electromagnetic stochastic zero-point field (ZPF), but neglects the Lorentz force due to the radiation random magnetic field Br. In addition to that rather basic limitation, other drawbacks remain, as well: i) SED fails when there are nonlinear forces; ii) it is not possible to derive the Schrödinger equation in general; iii) it predicts broad spectra for rarefied gases instead of the observed narrow spectral lines; iv) it does not explain double-slit electron diffraction patterns. We show in this short review that all of those drawbacks, and mainly the first most basic one, can be overcome in principle by introducing spin into stochastic electrodynamics (SEDS). Moreover, this modification of the theory also explains four observed effects that are otherwise so far unexplainable by QED, i.e., 1) the physical origin of the ZPF, and its natural upper cutoff; 2) an anomaly in experimental studies of the neutrino rest mass; 3) the origin and quantitative treatment of 1/f noise; and 4) the high-energy tail (∼ 1021 eV) of cosmic rays. We review the theoretical and experimental situation regarding these things and go on to propose a double-slit electron diffraction experiment that is aimed at discriminating between QM and SEDS. We show that, in the context of this experiment, for the case of an electron beam focused on just one of the slits, no interference pattern due to the other slit is predicted by QM, while this is not the case for SEDS. A second experiment that could discriminate between QED and SEDS regards a transversely large electron beam including both slits obtained in an insulating wall, where the ZPF is reduced but not vanished. The interference pattern according to SEDS should be somewhat modified with respect to QED’s.

Keywords

quantum mechanics Aharonov-Bohm effect spin electrodynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. P. Feynman, QED: The Strange Theory of Light and Matter, 7th Ed., Princeton: Princeton University Press, 1988: 9Google Scholar
  2. 2.
    L. Bosi and G. Cavalleri, Nuovo Cimento B, 2002, 117: 243ADSGoogle Scholar
  3. 3.
    G. Cavalleri and L. Bosi, Phys. Stat. Sol. (c), 2007, 4: 1230CrossRefGoogle Scholar
  4. 4.
    G. Cavalleri, E. Tonni, L. Bosi, and G. Spavieri, Fluct. Noise Lett., 2007, 7: L193CrossRefGoogle Scholar
  5. 5.
    E. Nelson, Phys. Rev., 1966, 150(4): 1079CrossRefADSGoogle Scholar
  6. 6.
    J. G. Gilson, Proc. Cambridge Philos. Soc., 1968, 74(4): 1061CrossRefGoogle Scholar
  7. 7.
    A. F. Kracklauer, Phys. Rev. D, 1974, 10(4): 1358CrossRefADSGoogle Scholar
  8. 8.
    G. Cavalleri, Phys. Rev. D, 1981, 23(2): 363CrossRefMathSciNetADSGoogle Scholar
  9. 9.
    L. De la Peña-Auerbach and A. M. Cetto, Found. Phys., 1975, 5(2): 355CrossRefMathSciNetADSGoogle Scholar
  10. 10.
    A. Carati and L. Galgani, Phys. Rev. E, 2000, 61(5): 4791CrossRefADSGoogle Scholar
  11. 11.
    G. Cavalleri and E. Cesaroni, Phys. Rev. E, 2003, 68: 028101CrossRefADSGoogle Scholar
  12. 12.
    A. Carati and L. Galgani, Phys. Rev. E, 2003, 68: 028102CrossRefADSGoogle Scholar
  13. 13.
    A. Carati, L. Galgani, and B. Pozzi, Phys. Rev. Lett., 2003, 90: 010601CrossRefADSGoogle Scholar
  14. 14.
    For a more readable derivation, see: T. H. Boyer, Phys. Rev., 1969, 182: 1374CrossRefADSGoogle Scholar
  15. 15.
    T. H. Boyer, Phys. Rev. D, 1975, 11: 790CrossRefADSGoogle Scholar
  16. 16.
    G. Cavalleri, E. Tonni, C. Bernasconi, and P. Di Sia, Nuovo Cimento B, 2001, 116: 1353ADSGoogle Scholar
  17. 17.
    G. Cavalleri, F. Barbero, E. Tonni, D. Molteni, G. Bottoni, and S. Lacchin, in: Proc. of X Int. Conf., Physical Interpretations of Relativity Theory, London, September, 8-11 2006, edited by M. C. Duffy, University of Sunderland, PD Publications, Liverpool, Great Britain, 2008, Vol. I (in press)Google Scholar
  18. 18.
    T. W. Marshall and P. Claverie, J. Math. Phys., 1980, 21: 1819CrossRefMathSciNetADSGoogle Scholar
  19. 19.
    A. Rueda and G. Cavalleri, Nuovo Cimento C, 1983, 6: 239CrossRefADSGoogle Scholar
  20. 20.
    H. E. Puthoff, Phys. Rev. D, 1987, 35: 3266CrossRefADSGoogle Scholar
  21. 21.
    M. Surdin, P. Braffort, and A. Taroni, Nature, 1966, 210(5034): 405CrossRefADSGoogle Scholar
  22. 22.
    E. Santos, Nuovo Cimento B, 1974, 19(1): 57CrossRefADSGoogle Scholar
  23. 23.
    L. De la Peña-Auerbach and A. M. Cetto, J. Math. Phys., 1979, 20(3): 469CrossRefMathSciNetADSGoogle Scholar
  24. 24.
    T. H. Boyer, Phys. Rev. A, 1980, 21: 66CrossRefMathSciNetADSGoogle Scholar
  25. 25.
    T. H. Boyer, Phys. Rev. D, 1984, 29: 1089CrossRefADSGoogle Scholar
  26. 26.
    A. Rueda, Nuovo Cimento A, 1978, 48: 155CrossRefADSGoogle Scholar
  27. 27.
    A. Rueda, Phys. Rev. A, 1981, 23: 2020CrossRefMathSciNetADSGoogle Scholar
  28. 28.
    L. De la Peña-Auerbach, Stochastic Electrodynamics: its development, present situation, and perspectives, in: Stochastic Processes Applied to Physics and other Related Fields, edited by G. Gomez, S. M. Moore, A. M. Rodriguez-Vargas, and A. Rueda, World Scientific, 1983: 428–649. The criticism to Boyer’s 1969 paper [14], is found in: L. De la Peñna-Auerbach and A. M. Cetto, The Quantum Dice, Kluwer, 1996, Chap. 5, Sec. 5.2: 1476Google Scholar
  29. 29.
    B. Haisch, A. Rueda, and H. E. Puthoff, Phys. Rev. A, 1994, 49: 678CrossRefADSGoogle Scholar
  30. 30.
    A. Rueda, B. Haisch, and D. C. Cole, Astrophys. J., 1995, 445: 7CrossRefADSGoogle Scholar
  31. 31.
    D. C. Cole, A. Rueda, and K. Danley, Phys. Rev. A, 2001, 63: 054101CrossRefADSGoogle Scholar
  32. 32.
    A. Rueda and B. Haisch, Ann. Phys. (Leipzig), 2005, 14: 479CrossRefMathSciNetADSGoogle Scholar
  33. 33.
    Y. S. Levin, Phys. Rev. A, 2009, 79: 012114CrossRefADSGoogle Scholar
  34. 34.
    L. Pesquera and P. Claverie, J. Math. Phys., 1982, 23: 1315CrossRefMathSciNetADSGoogle Scholar
  35. 35.
    A. O. Barut and N. Zanghi, Phys. Rev. Lett., 1984, 52: 2009CrossRefMathSciNetADSGoogle Scholar
  36. 36.
    G. Cavalleri, Nuovo Cimento B, 1997, 112: 1193ADSGoogle Scholar
  37. 37.
    I. Pitowsky, Phys. Rev Lett., 1982, 48: 1299CrossRefMathSciNetADSGoogle Scholar
  38. 38.
    D. Z. Albert and R. Galchen, Was Einstein Wrong?: A Quantum Threat to Special Relativity, in: Scientific American Magazine, March 2009Google Scholar
  39. 39.
    A. Aspect, J. Dalibard, and G. Roger, Phys. Rev. Lett., 1982, 49: 1804CrossRefMathSciNetADSGoogle Scholar
  40. 40.
    G. Cavalleri, E. Cesaroni, and E. Tonni, in: Recent advances in Relativity Theory 2: material interpretations, edited by M. C. Duffy and M. Wegener, Palm Harbor, Florida (USA): Hadronic Press, 2001, Vol. 2: 19Google Scholar
  41. 41.
    G. Cavalleri, Lett. Nuovo Cimento, 1985, 43: 285CrossRefMathSciNetGoogle Scholar
  42. 42.
    G. Cavalleri and G. Spavieri, Nuovo Cimento B, 1986, 95: 194CrossRefMathSciNetADSGoogle Scholar
  43. 43.
    J. Maddox, Nature (London), 1987, 325: 385CrossRefADSGoogle Scholar
  44. 44.
    G. Cavalleri and G. Mauri, Phys. Rev. B, 1990, 41: 6751CrossRefMathSciNetADSGoogle Scholar
  45. 45.
    G. Cavalleri and A. Zecca, Phys. Rev. B, 1991, 43: 3223CrossRefADSGoogle Scholar
  46. 46.
    A. Zecca and G. Cavalleri, Nuovo Cimento B, 1997, 112: 1Google Scholar
  47. 47.
    G. Cavalleri and E. Tonni, in: The Foundation of Quantum Mechanics — Historical Analysis and Open Questions — Lecce 1998, edited by C. Garola and A. Rossi, World Scientific Publ., 2000: 111Google Scholar
  48. 48.
    A. Tonomura, N. Osakabe, T. Matsuda, T. Kawasaki, and J. Endo, Phys. Rev. Lett., 1986, 56: 792CrossRefADSGoogle Scholar
  49. 49.
    N. Osakabe, et al., Phys. Rev. A, 1986, 34: 815CrossRefADSGoogle Scholar
  50. 50.
    A. Tonomura, et al., Am. J. Phys., 1989, 57: 117CrossRefADSGoogle Scholar
  51. 51.
    Y. Aharonov and D. Bohm, Phys. Rev., 1959, 115: 48CrossRefMathSciNetADSGoogle Scholar
  52. 52.
    Y. Aharonov and A. Casher, Phys. Rev. Lett., 1984, 53: 319CrossRefMathSciNetADSGoogle Scholar
  53. 53.
    G. Spavieri, Phys. Rev. Lett., 1998, 81: 1533CrossRefADSGoogle Scholar
  54. 54.
    G. Spavieri, Phys. Rev. A, 1999, 59: 3194CrossRefADSGoogle Scholar
  55. 55.
    X. G. He and B. H. J. McKellar, Phys. Rev. A, 1993, 47: 3424CrossRefADSGoogle Scholar
  56. 56.
    M. Wilkens, Phys. Rev. A, 1994, 49: 570CrossRefADSGoogle Scholar
  57. 57.
    M. Wilkens, Phys. Rev. Lett., 1994, 72: 5CrossRefADSGoogle Scholar
  58. 58.
    J. Anandan, Phys. Rev. Lett., 2000, 85: 1354CrossRefADSGoogle Scholar
  59. 59.
    V. M. Tkachuk, Phys. Rev. A, 2000, 62: 052112–1CrossRefADSGoogle Scholar
  60. 60.
    G. Spavieri, Phys. Rev. Lett., 1999, 82: 3932CrossRefADSGoogle Scholar
  61. 61.
    G. Spavieri, Phys. Lett. A, 2003, 310: 13MATHCrossRefMathSciNetADSGoogle Scholar
  62. 62.
    G. Spavieri, Eur. Phys. J. D, 2006, 39: 157CrossRefADSGoogle Scholar
  63. 63.
    T. H. Boyer, Phys. Rev. A, 1987, 36: 5083CrossRefADSGoogle Scholar
  64. 64.
    T. H. Boyer, Nuovo Cimento B, 1987, 100: 685MathSciNetADSGoogle Scholar
  65. 65.
    G. Spavieri and G. Cavalleri, Europhys. Lett., 1992, 18: 301CrossRefADSGoogle Scholar
  66. 66.
    G. Spavieri, Eur. J. Phys. D, 2006, 37: 327CrossRefMathSciNetADSGoogle Scholar

Copyright information

© Higher Education Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  • Giancarlo Cavalleri
    • 1
  • Francesco Barbero
    • 1
  • Gianfranco Bertazzi
    • 1
  • Eros Cesaroni
    • 1
  • Ernesto Tonni
    • 1
  • Leonardo Bosi
    • 2
  • Gianfranco Spavieri
    • 3
  • George T. Gillies
    • 4
  1. 1.Dipartimento di Matematica e FisicaUniversità Cattolica del Sacro CuoreBresciaItaly
  2. 2.Politecnico di Milano (Polo Regionale di Lecco)CNR/INFM and Dipartimento di FisicaMilanoItaly
  3. 3.Centro de Física Fundamental, Facultad de CienciasUniversidad de Los AndesMéridaVenezuela
  4. 4.School of Engineering and Applied ScienceUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations