Frontiers of Physics in China

, Volume 4, Issue 4, pp 469–480

Advances in surface plasmon resonance-based high throughput biochips

  • San-jun Zhang (张三军)
  • Lotfi Berguiga
  • Juan Elezgaray
  • Nicolas Hugo
  • Wen-xue Li (李文雪)
  • Thibault Roland
  • He-ping Zeng (曾和平)
  • Francoise Argoul
Review Article

Abstract

This article reviews our recent advances in surface plasmon resonance (SPR) based biochips. It includes four issues, which are the preparation and characterization of high quality gold film, the preparation and characterization of self-assembled monolayer (SAM), dynamics of DNA adsorption on SAMs, and SPR-based microscopies. Numerous topics related to SPR, such as, the modeling of SPR by transmission matrix, effective medium theory, applications of SPR in biology, and SPR-based novel microscopies, are discussed. A novel electrochemical technique, which is extremely useful for the preparation and characterization of high quality SAMs, is also discussed.

Keywords

surface plasmon resonance effective medium theory self-assembled monolayer electrochemical impedance spectroscopy atomic force microscopy SPR-based microscopy 

PACS numbers

42.25.Bs 42.30.Va 68.35.-p 68.37.Ps 87.80.-y 87.85.dh 87.85.Rs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Homola, Surface Plasmon Resonance Based Sensors, Vol. 4 of Springer Series on Chemical Sensors and Biosensors, Heidelberg: Springer, 2006Google Scholar
  2. 2.
    B. Schasfoort and A. J. Tudos, Handbook of Surface Plasmon Resonance, The Royal Society of Chemistry, 2008Google Scholar
  3. 3.
    C. Thirstrup and W. Zong, Sensors and Actuators B, 2005, 106: 796CrossRefGoogle Scholar
  4. 4.
    D. N. Howbrook, A. M. van der Valk, M. C. O’shaughnessy, D. K. Sarker, S. C. Baker, and A. W. Lloyd, Drug Discovery Today, 2003, 8: 642CrossRefGoogle Scholar
  5. 5.
    G. Ramsay, Nature Biotechnol., 1998, 16: 40CrossRefGoogle Scholar
  6. 6.
    D. H. Geschwind, Lancet Neurology, 2003, 2, 275CrossRefGoogle Scholar
  7. 7.
    N. Dhiman, R. Bonilla, D. O. J, and G. A. Poland, Vaccine, 2002, 20, 22CrossRefGoogle Scholar
  8. 8.
    S. Szunerits, L. Bouffier, R. Calemczuk, B. Corso, M. Demeunynck, E. Descamps, Y. Defontaine, J. B. Fiche, A. T. L. Elodie Fortin, P. Mailley, et al., Electroanalysis, 2005, 17: 2001CrossRefGoogle Scholar
  9. 9.
    J. Spadavecchia, M. Manera, F. Quaranta, P. Siciliano, and R. Rella, Biosens. Bioelectron., 2005, 21: 894CrossRefGoogle Scholar
  10. 10.
    J. Hottin, J. Moreau, G. Roger, J. Spadavecchia, M. C. Millot, M. Goossens, and M. Canva, Plasmonics, 2007, 2: 201CrossRefGoogle Scholar
  11. 11.
    H. Raether, Surface Plasmon on Smooth and Rough Surfaces and on Gratings, Springer-Verlag, 1988Google Scholar
  12. 12.
    M. Born and E. Wolf, Principles of Optics, 7th Ed., Cambridge: Cambridge University Press, 2002Google Scholar
  13. 13.
    D. W. Berreman, J. Opt. Soc. Am., 1972, 62: 502CrossRefADSGoogle Scholar
  14. 14.
    P. Yeh, J. Opt. Soc. Am., 1979, 69: 742CrossRefADSGoogle Scholar
  15. 15.
    P. Yeh, Optical Waves in Layed Media, Wiley Series in Pure and Applied Optics, 1988Google Scholar
  16. 16.
    S. Zhang, L. Berguiga, J. Elezgaray, T. Roland, C. Faivre-Moskalenko, and F. Argoul, Surf. Sci., 2007, 601: 5445CrossRefADSGoogle Scholar
  17. 17.
    S. Zhang, Ph.D. thesis, Ecole Normale Supérieure de Lyon, Lyon, France, 2008Google Scholar
  18. 18.
    S. Zhang, Ph.D. thesis, East China Normal University, Shanghai, China, 2007Google Scholar
  19. 19.
    J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, Chem. Rev., 2005, 105: 1103CrossRefGoogle Scholar
  20. 20.
    C. Vericat, M. E. Vela, G. A. B. J. A. M. Gago, X. Torrelles, and R. C. Salvarezza, J. Phys.: Condens. Matter, 2006, 18: R867CrossRefADSGoogle Scholar
  21. 21.
    L. Ward, The Optical Constants of Bulk Materials and Films, 2nd Ed., Optics and Optoelectronic Series, Bristol, England: Institute of Physics Publishing, 1994Google Scholar
  22. 22.
    T. C. Choy, Effective medium theory: principles and applications, Vol. 102 of International series of monographs on physics, Oxford Science Publications, 1999Google Scholar
  23. 23.
    M. L. Theye, Phys. Rev. B, 1970, 2: 3060CrossRefADSGoogle Scholar
  24. 24.
    E. D. Palik, Handbook of Optical Constants of Solids, Vol. I, Academic Press, 1985Google Scholar
  25. 25.
    P. B. Johnson and R. W. Christy, Phys. Rev. B, 1972, 6: 4370CrossRefADSGoogle Scholar
  26. 26.
    Gray and E. Dwight, American Institute of Physics Handbook, 3rd Ed., McGraw-Hill, 1972Google Scholar
  27. 27.
    L. Berguiga, S. Zhang, F. Argoul, and J. Elezgaray, Opt. Lett., 2007, 32: 509CrossRefADSGoogle Scholar
  28. 28.
    T. Wink, S. J. van Zuilen, A. Bult, and W. P. van Bennekom, Analyst, 1997, 122: 43RCrossRefADSGoogle Scholar
  29. 29.
    A. Ulman, An Introduction to Ultrathin Organic Film: from Langmuir-Blodgett to Self-assembly, Academic Press, 1991Google Scholar
  30. 30.
    K. S. Birdi, Self-assembly Monolayer Strctures of Lipids and Macromolecules at Interfaces, New York: Kluwer Academic/Plenum Publishers, 1999Google Scholar
  31. 31.
    F. Schreiber, Progress in Surface Science, 2000, 65: 151CrossRefADSGoogle Scholar
  32. 32.
    F. Schreiber, J. Phys.: Condens. Matter, 2004, 16: R881CrossRefADSGoogle Scholar
  33. 33.
    S. Zhang, N. Hugo, W. Li, T. Roland, L. Berguiga, J. Elezgaray, and F. Argoul, J. Electroanal. Chem., 2009, 629: 138CrossRefGoogle Scholar
  34. 34.
    S. Zhang, C. Moskalenko, L. Berguiga, J. Elezgaray, and F. Argoul, J. Electroanal. Chem., 2007, 603: 107CrossRefGoogle Scholar
  35. 35.
    J. Kulys, J. A. Munk, T. Buch-Rasmussen, and H. E. Hansen, Electroanalysis, 1994, 6: 945CrossRefGoogle Scholar
  36. 36.
    J. R. Macdonald, ed., Impedance Spectroscopy, John Wiley and Sons, 1987Google Scholar
  37. 37.
    T. Pajkossy, J. Electroanal. Chem., 1994, 364: 111CrossRefGoogle Scholar
  38. 38.
    E. Boubour and R. B. Lennox, Langmuir, 2000, 16: 4222CrossRefGoogle Scholar
  39. 39.
    E. Boubour and R. B. Lennox, Langmuir, 2000, 16: 7464CrossRefGoogle Scholar
  40. 40.
    K. A. Peterlinz and G. R., Langmuir, 1996, 12: 4731CrossRefGoogle Scholar
  41. 41.
    G. Steiner, Analytical and Bioanalytical Chemistry, 2004, 379: 328.CrossRefGoogle Scholar
  42. 42.
    R. J. Green, R. A. Frazier, K. M. Shakesheff, M. C. Davies, C. J. Roberts, and S. J. Tendler, Biomaterials, 2000, 21: 1823CrossRefGoogle Scholar
  43. 43.
    C. T. Campbell and G. Kim, Biomaterials, 2007, 28: 2380CrossRefGoogle Scholar
  44. 44.
    L. Malic, T. Veres, and M. Tabrizian, Biosens. Bioelectron., 2009, 24: 2218CrossRefGoogle Scholar
  45. 45.
    M. Piliarik and J. H. Lucie Parova, Biosens. Bioelectron., 2009, 24: 1399CrossRefGoogle Scholar
  46. 46.
    A. W. Peterson, M. Halter, A. Tona, K. Bhadriraju, and A. L. Plant, BMC Cell Biology, 2009, 10: 16CrossRefGoogle Scholar
  47. 47.
    P. Torok and F. J. Kao, Optical Immaging and Microscopy: Techniques and Advanced Systems, Optical Sciences, Springer, 2003Google Scholar
  48. 48.
    M. G. Somekh, Journal of Microscopy 206: 120 (2002).CrossRefMathSciNetGoogle Scholar
  49. 49.
    J. Beermann, S.M. Novikov, K. Leosson, and S. I. Bozhevolnyi, J. Opt. A, 2009, 11: 75004Google Scholar
  50. 50.
    R. Y. He, Y. D. Su, K. C. Cho, C. Y. Lin, N. S. Chang, C. H. Chang, and S. J. Chen, Opt. Express, 2009, 17: 5987CrossRefADSGoogle Scholar
  51. 51.
    D. Yelin, D. Oron, S. Thiberge, E. Moses, and Y. Silberberg, Opt. Express, 2006, 11: 1385.ADSCrossRefGoogle Scholar
  52. 52.
    J. Zhang, C. W. See, M. G. Somekh, M. C. Pitter, and S. G. Liu, Appl. Phys. Lett., 2004, 85: 5451CrossRefADSGoogle Scholar
  53. 53.
    M. Specht, J. D. Pedarnig, W. M. Heckl, and T.W. Hansch, Phys. Rev. Lett., 1992, 68: 476CrossRefADSGoogle Scholar
  54. 54.
    A. E. Kryukov, Y. K. Kim, and J. B. Ketterson, J. Appl. Phys., 1997, 82: 5411CrossRefADSGoogle Scholar
  55. 55.
    I. I. Smolyaninov, J. Elliott, A. V. Zayats, and C. C. Davis, Phys. Rev. Lett., 2005, 94: 057401CrossRefADSGoogle Scholar
  56. 56.
    I. I. Smolyaninov, J. Opt. A, 2005, 7: S165ADSGoogle Scholar
  57. 57.
    M. G. Somekh, S. G. Liu, T. S. Velinov, and C. W. See, Opt. Lett., 2000, 25: 823CrossRefADSGoogle Scholar
  58. 58.
    M. G. Somekh, S. Liu, T. S. Velinov, and C. W. See, Appl. Opt., 2000, 39: 6279CrossRefADSGoogle Scholar
  59. 59.
    H. Kano, S. Mizuguchi, and S. Kawata, J. Opt. Soc. Ame. B, 1998, 15: 1381CrossRefADSGoogle Scholar
  60. 60.
    T. Roland, L. Berguiga, N. Hugo, and F. Argoul, to be publishedGoogle Scholar

Copyright information

© Higher Education Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  • San-jun Zhang (张三军)
    • 1
    • 2
  • Lotfi Berguiga
    • 1
  • Juan Elezgaray
    • 3
  • Nicolas Hugo
    • 1
  • Wen-xue Li (李文雪)
    • 2
  • Thibault Roland
    • 1
  • He-ping Zeng (曾和平)
    • 2
  • Francoise Argoul
    • 1
  1. 1.Laboratoire Joliot Curie USR3010, Laboratoire de Physique UMR5672CNRS Ecole Normale Supérieure de LyonLyonFrance
  2. 2.Key Laboratory of Optical and Magnetic Resonance Spectroscopy, and Department of PhysicsEast China Normal UniversityShanghaiChina
  3. 3.UMR 5248CNRS-Université Bordeaux 1-ENITAB, IECBPESSACFrance
  4. 4.Laboratoire de Photonique Quantique et MoléculaireEcole Normale Supérieure de CachanCachanFrance

Personalised recommendations