Frontiers of Physics in China

, Volume 4, Issue 3, pp 398–402 | Cite as

First-principles calculation on the conductance of ruthenium-quasi cumulene-ruthenium molecular junctions

  • Jing Ning (宁静)
  • Xin Shen (沈昕)
  • Zi-yong Shen (申自勇)
  • Xing-yu Zhao (赵兴钰)
  • Shi-min Hou (候士敏)Email author
Research Article


The conductance of a family of ruthenium-quasi cumulene-ruthenium molecular junctions including different numbers of carbon atoms, both in even numbers and odd numbers, are investigated using a fully self-consistent ab initio approach which combines the non-equilibrium Green’s function formalism with density functional theory. Our calculations demonstrate that although the overall transport properties of the Ru-quasi cumulene-Ru junctions with an even number of carbon atoms are different from those of the junctions with an odd number of carbon atoms, the difference between the corresponding current-voltage (I–V) characteristics of these molecular junctions declines to lesser than 16% when the voltage goes up. In each group, the molecular junctions give a large transmission around the Fermi level since the Ru-C π bonds can extend the π conjugation of the carbon chains into the Ru electrodes, and their I–V characteristics are almost linear and independent of the chain length, illustrating potential applications as conducting molecular wires in future molecular electronic devices and circuits.


molecular electronic devices density functional theory non-equilibrium Green’s function carbon monatomic chains 

PACS numbers 73.63.-b 72.10.-d 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Nitzan and M. A. Ratner, Science, 2003, 300: 1384CrossRefADSGoogle Scholar
  2. 2.
    N. J. Tao, Nature Nanotechnology, 2006, 1: 173CrossRefADSGoogle Scholar
  3. 3.
    W. Lu and C. M. Lieber, Nature Materials, 2007, 6: 841CrossRefADSGoogle Scholar
  4. 4.
    Ž. Crljen and G. Baranovi, Phys. Rev. Lett., 2007, 98: 116801Google Scholar
  5. 5.
    J. Ulrich, D. Esrail, W. Pontius, L. Venkataraman, D. Millar, and L. H. Doerrer, J. Phys. Chem. B, 2006, 110: 2462CrossRefGoogle Scholar
  6. 6.
    J. Ning, Z. Qian, R. Li, S. Hou, A. R. Rocha, and S. Sanvito, J. Chem. Phys., 2007, 126: 174706Google Scholar
  7. 7.
    S. Hou, Y. Chen, X. Shen, R. Li, J. Ning, Z. Qian, and S. Sanvito, Chem. Phys., 2008, 354: 107CrossRefADSGoogle Scholar
  8. 8.
    K. S. Thygesen, Phys. Rev. B, 2006, 73: 035309Google Scholar
  9. 9.
    P. Hohenberg and W. Kohn, Phys. Rev. B, 1964, 136: 864CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    W. Kohn and L. J. Sham, Phys. Rev. A, 1965, 140: 1133CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    J. Zhang, S. Hou, R. Li, Z. Qian, R. Han, Z. Shen, X. Zhao, and Z. Xue, Nanotechnology, 2005, 16: 3057CrossRefADSGoogle Scholar
  12. 12.
    Y. Xue, S. Datta, and M. A. Ratner, Chem. Phys., 2002, 281: 151CrossRefGoogle Scholar
  13. 13.
    S. H. Ke, H. U. Baranger, and W. Yang, Phys. Rev. B, 2004, 70: 085410Google Scholar
  14. 14.
    J. Taylor, H. Guo, and J. Wang, Phys. Rev. B, 2001, 63: 245407Google Scholar
  15. 15.
    M. Brandbyge, J. L. Mozos, P. Ordejón, J. Taylor, and K. Stokbro, Phys. Rev. B, 2002, 65: 165401Google Scholar
  16. 16.
    A. R. Rocha, V. M. García-Suárez, S. Bailey, C. Lambert, J. Ferrer, and S. Sanvito, Phys. Rev. B, 2006, 73: 085414Google Scholar
  17. 17.
    J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, J. Phys.: Condens. Matter, 2002, 14: 2745CrossRefADSGoogle Scholar
  18. 18.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 1996, 77: 3865CrossRefADSGoogle Scholar
  19. 19.
    M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Rev. Mod. Phys., 1992, 64: 1045CrossRefADSGoogle Scholar
  20. 20.
    S. Datta, Quantum Transport: Atom to Transistor, Cambridge: Cambridge University Press, 2005zbMATHGoogle Scholar
  21. 21.
    R. Li, S. Hou, J. Zhang, Z. Qian, Z. Shen, and X. Zhao, J. Chem. Phys., 2006, 5: 194113CrossRefADSGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  • Jing Ning (宁静)
    • 1
  • Xin Shen (沈昕)
    • 1
  • Zi-yong Shen (申自勇)
    • 1
  • Xing-yu Zhao (赵兴钰)
    • 1
  • Shi-min Hou (候士敏)
    • 1
    Email author
  1. 1.Key Laboratory for the Physics and Chemistry of Nanodevices, Department of ElectronicsPeking UniversityBeijingChina

Personalised recommendations