Advertisement

Frontiers of Physics in China

, Volume 1, Issue 4, pp 428–441 | Cite as

Current progress on heat conduction in one-dimensional gas channels

  • Mao Jun-wen Email author
  • Li You-quan Email author
Review Article
  • 41 Downloads

Abstract

We give a brief review of the past development of model studies on one-dimensional heat conduction. Particularly, we describe recent achievements on the study of heat conduction in one-dimensional gas models including the hard-point gas model and billiard gas channel. For a one-dimensional gas of elastically colliding particles of unequal masses, heat conduction is anomalous due to momentum conservation, and the divergence exponent of heat conductivity is estimated as α≈0.33 in kL α . Moreover, in billiard gas models, it is found that exponent instability is not necessary for normal heat conduction. The connection between heat conductivity and diffusion is investigated. Some new progress is reported. A recently proposed model with a quantized degree of freedom to study the heat transport in quasi-one dimensional systems is illustrated in which three distinct temperature regimes of heat conductivity are manifested. The establishment of local thermal equilibrium (LTE) in homogeneous and heterogeneous systems is also discussed. Finally, we give a summary with an outlook for further study about the problem of heat conduction.

Keywords

heat conductivity hard-point gas billiard anomalous local thermal equilibrium 

PACS numbers

44.10.+i 05.45.-a 05.70.Ln 66.70.+f 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lepri S., Livi R., and Politi A., Thermal conduction in classical low-dimensional lattices, Phys. Rep., 377(1): 1–80, April 2003MathSciNetCrossRefADSGoogle Scholar
  2. 2.
    Chen G., Borca-Tasciuc D., and Yang R. G., Encyclopedia Of Nanoscience And Nanotechnology: Nanoscale Heat Transfer, volume X. American Scientic Publisher, 2004Google Scholar
  3. 3.
    Madelung O., Introduction to Solid-State Theory, Springer-Verlag, 1996Google Scholar
  4. 4.
    Balescu R., Equilibrium and Nonequilibrium Statistical Mechanics, John Wiley and Sons, 1975Google Scholar
  5. 5.
    Cahill D. G., Ford W. K., Goodson K. E., Mahan G. D., Majumdar A., Maris H. J., Merlin R., and Phillpot S. R., Nanoscale thermal transport. J. Appl. Phys., 2003, 93(2): 793–818CrossRefADSGoogle Scholar
  6. 6.
    Peierls R. E., Quantum Theory of Solid, Oxford University Press, 1955Google Scholar
  7. 7.
    Bonetto F., Lebowitz J. L., and Rey-Bellet L., Fourier law: A challenge to theorists, preprint arXiv: math-ph/0002052Google Scholar
  8. 8.
    Raveché J. H., Perspectives in Statistical Physics, North-Holland Publishing Company, 1981Google Scholar
  9. 9.
    Green M. S., Markoff random processes and the statistical mechanics of time-dependent phenomena, J. Chem. Phys., 1952, 20(8): 1281MathSciNetCrossRefGoogle Scholar
  10. 10.
    Green M. S., Markoff random processes and the statistical mechanics of time-dependent phenomena. II: Irreversible processes in fluids, J. Chem. Phys., 1954, 22(3): 398MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kubo R., Toda M., and Hashitsume N., Statistical Physics II, in: Springer series in Solid State ciences, volume 31, Springer, Berlin, 1991Google Scholar
  12. 12.
    Ford J., The Fermi-Pasta-Ulam problem: Paradox turns discovery, Phys. Rep., 1992, 213: 271MathSciNetCrossRefADSGoogle Scholar
  13. 13.
    Lepri S., Livi R., and Politi A., Studies of thermal conductivity in Fermi-Pasta-Ulam-like lattices, Chaos, 2005, 15(1): 015118Google Scholar
  14. 14.
    Narayan O. and Ramaswamy S., Anomalous heat conduction in one-dimensional momentum-conserving systems, Phys. Rev. Lett., 2002, 89(20): 200601Google Scholar
  15. 15.
    Kim P., Shi L., Majumdar A., and McEuen P. L., Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett., 2001, 8721(21): 215502Google Scholar
  16. 16.
    Schwab K., Henriksen E. A., Worlock J. M., and Roukes M. L., Measurement of the quantum of thermal conductance, Nature, 2000, 404(6781): 974–977CrossRefADSGoogle Scholar
  17. 17.
    Tighe T. S., Worlock J. M., and Roukes M. L., Direct thermal conductance measurements on suspended monocrystalline nanostructures, Appl. Phys. Lett., 1997, 70(20): 2687–2689CrossRefADSGoogle Scholar
  18. 18.
    Sverdrup P. G., Sinha S., Asheghi M., Uma S., and Goodson K. E., Measurement of ballistic phonon conduction near hotspots in silicon, Appl. Phys. Lett., 2001, 78(21): 3331–3333CrossRefADSGoogle Scholar
  19. 19.
    Prosen T., and Campbell D. K., Normal and anomalous heat transport in one-dimensional classical lattices, Chaos, 2005, 15(1): 015117Google Scholar
  20. 20.
    Rieder Z., Lebowitz J. L., and Lieb E., Properties of a harmonic crystal in a stationary nonequilibrium state, J. Math. Phys., 1967, 8: 1073CrossRefGoogle Scholar
  21. 21.
    Toda M., Vibration of a chain with nonlinear interaction, J. Phys. Soc. Jpn., 1967, 22: 431CrossRefGoogle Scholar
  22. 22.
    Toda M., Studies of a non-linear lattice, Phys. Rep., 1975, 18(C): 1MathSciNetCrossRefADSGoogle Scholar
  23. 23.
    Mokross F., and Bttner H., Thermal conductivity in the diatomic Toda lattice, J. Phys. C, 1983, 16: 4539–4546CrossRefADSGoogle Scholar
  24. 24.
    Toda M., Solitons and heat conduction, Phys. Scr., 1979, 20: 424zbMATHMathSciNetADSGoogle Scholar
  25. 25.
    Li H. B., PhD thesis, Lanzhou Univ., 2002Google Scholar
  26. 26.
    Izergin A. G. and Korepin V. E., A lattice Sine-Gordon model., Vestn. Leningr. Univ., Ser. 4: Fiz., Khim., 1981, 22: 88Google Scholar
  27. 27.
    Lepri S., Livi R., and Politi A., Heat conduction in chains of nonlinear oscillators, Phys. Rev. Lett., 1997, 78(10): 1896–1899CrossRefADSGoogle Scholar
  28. 28.
    Lepri S., Livi R., and Politi A., Universality of anomalous one-dimensional heat conductivity, Phys. Rev. E, 2003, 68(6): 067102Google Scholar
  29. 29.
    Casati G., Ford J., Vivaldi F., and Visscher W. M., One-dimensional classical many-body system having a normal thermal conductivity, Phys. Rev. Lett., 1984, 52(21): 1861CrossRefADSGoogle Scholar
  30. 30.
    Fillipov A., Hu B., Li B. W., and Zeltser A., Energy transport between two attractors connected by a Fermi-Pasta-Ulam chain, J. Phys. A, 1998, 31(38): 7719–7728CrossRefADSGoogle Scholar
  31. 31.
    Hatano T., Heat conduction in the diatomic Toda lattice revisited, Phys. Rev. E, 1999, 59(1): R1–R4MathSciNetCrossRefADSGoogle Scholar
  32. 32.
    Lippi A., PhD thesis, University of Florence, 1998Google Scholar
  33. 33.
    Lepri S., Livi R., and Politi A., On the anomalous thermal conductivity of one-dimensional lattices, Europhys. Lett., 1998, 43(3): 271–276CrossRefADSGoogle Scholar
  34. 34.
    Lepri S., Livi R., and Politi A., Energy transport in anharmonic lattices close to and far from equilibrium, Physica D, 1998, 119(1–2): 140–147CrossRefADSGoogle Scholar
  35. 35.
    Pereverzev A., Fermi-Pasta-Ulam β lattice: Peierls equation and anomalous heat conductivity, Phys. Rev. E, 2003, 68(5): 056124Google Scholar
  36. 36.
    Grassberger P., Nadler W., and Yang L., Heat conduction and entropy production in a one-dimensional hard-particle gas, Phys. Rev. Lett., 2002, 89(18): 180601Google Scholar
  37. 37.
    Deutsch J. M. and Narayan O., One-dimensional heat conductivity exponent from a random collision model, Phys. Rev. E, 2003, 68(1): 010201Google Scholar
  38. 38.
    Deutsch J. M. and Narayan O., Correlations and scal-ing in one-dimensional heat conduction, Phys. Rev. E, 2003, 68(4): 041203Google Scholar
  39. 39.
    Cipriani P., Denisov S., and Politi A., From anomalous energy diffusion to Levy walks and heat conductivity in one-dimensional systems, Phys. Rev. Lett., 2005, 94(24): 244301Google Scholar
  40. 40.
    Wang J. S. and Li B. W., Mode-coupling theory and molecular dynamics simulation for heat conduction in a chain with transverse motions, Phys. Rev. E, 2004, 70(2): 021204Google Scholar
  41. 41.
    Wang J. S. and Li B. W., Intriguing heat conduction of a chain with transverse motions, Phys. Rev. Lett., 2004, 92(7): 074302Google Scholar
  42. 42.
    Hu B. B. and Yang L., Heat conduction in the Frenkel-Kontorova model, Chaos, 2005, 15(1): 015119Google Scholar
  43. 43.
    Frenkel Y. and Kontorova T., Zh. Eksp. Teor. Fiz., 1938, 8: 89Google Scholar
  44. 44.
    Hu B. B., Li B. W., and Zhao H., Heat conduction in one-dimensional chains. Phys. Rev. E, 1998, 57(3): 2992–2995CrossRefADSGoogle Scholar
  45. 45.
    Yang L., contributed talk given in Dynamics Days Asia-Pacific: The Third International Conference on Nonlinear Science, Singapore, 2004Google Scholar
  46. 46.
    Hu B. and Yang L., preprint cns-04-9 of the centre for nonlinear studies, Hong Kong Baptist University, submitted for publicationGoogle Scholar
  47. 47.
    Li B. W., Wang L., and Casati G., Thermal diode: Rectification of heat flux, Phys. Rev. Lett., 2004, 93(18): 184301Google Scholar
  48. 48.
    Dhar A., Heat conduction in a one-dimensional gas of elastically colliding particles of unequal masses, Phys. Rev. Lett., 2001, 86(16): 3554–3557MathSciNetCrossRefADSGoogle Scholar
  49. 49.
    Garrido P. L., Hurtado P. I., and Nadrowski B., Simple one-dimensional model of heat conduction which obeys Fouriers law, Phys. Rev. Lett., 2001, 86: 5486CrossRefADSGoogle Scholar
  50. 50.
    Prosen T. and Campbell D. K., Momentum conservation implies anomalous energy transport in 1D classical lattices, Phys. Rev. Lett., 2000, 84(13): 2857–2860CrossRefADSGoogle Scholar
  51. 51.
    Savin G. P., A. V., and Tsironis and Zolotaryuk A. V., Heat conduction in one-dimensional systems with hardpoint interparticle interactions, Phys. Rev. Lett., 2002, 88: 154301Google Scholar
  52. 52.
    Casati G. and Prosen T., Anomalous heat conduction in a one-dimensional ideal gas, Phys. Rev. E, 2003, 67(1): 015203(R)Google Scholar
  53. 53.
    Li B. W., Casati G., Wang J., and Prosen T., Fourier law in the alternate-mass hard-core potential chain, Phys. Rev. Lett., 2004, 92(25): 254301Google Scholar
  54. 54.
    Li B. W., Wang L., and Hu B. B., Finite thermal conductivity in 1D models having zero Lyapunov exponents, Phys. Rev. Lett., 2002, 88: 223901Google Scholar
  55. 55.
    Mao J. W., Li Y. Q., and Ji Y. Y., Role of chaos in one-dimensional heat conductivity, Phys. Rev. E, 2005, 71(6): 061202Google Scholar
  56. 56.
    Li B. W., Casati G., and Wang J., Heat conductivity in linear mixing systems, Phys. Rev. E, 2003, 67(2): 021204Google Scholar
  57. 57.
    Alonso D., Artuso R., Casati G., and Guarneri I., Heat conductivity and dynamical instability, Phys. Rev. Lett., 1999, 82(9): 1859–1862CrossRefADSGoogle Scholar
  58. 58.
    Alonso D., Ruiz A., and I. de Vega, Polygonal billiards and transport: Diffusion and heat conduction, Phys. Rev. E, 2002, 66(6): 066131Google Scholar
  59. 59.
    Alonso D., Ruiz A., and I. de Vega, Transport in polygonal billiards. Physica D, 2004, 187(1–4): 184–199zbMATHMathSciNetCrossRefADSGoogle Scholar
  60. 60.
    Kaburaki H. and Machida M., Thermal conductivity in one-dimensional lattices of the fermi-pasta-ulam type, Phys. Lett. A, 1993, 181: 85CrossRefADSGoogle Scholar
  61. 61.
    Li B. W. and Wang J., Anomalous heat conduction and anomalous diffusion in one-dimensional systems, Phys. Rev. Lett., 2003, 91(4): 044301Google Scholar
  62. 62.
    Denisov S., Klafter J., and Urbakh M., Dynamical heat channels, Phys. Rev. Lett., 2003, 91(19): 194301Google Scholar
  63. 63.
    Li B. W., Wang J., Wang L., and Zhang G., Anomalous heat conduction and anomalous diffusion in nonlinear lattices, single walled nanotubes, and billiard gas channels. Chaos, 2005, 15(1): 015121Google Scholar
  64. 64.
    Li B., Zhao H., and Hu B., Comment on “can disorder induce a finite thermal conductivity in 1D lattices?” Reply, Phys. Rev. Lett., 2001, 87(6): 069402Google Scholar
  65. 65.
    Li B. W., Zhao H., and Hu B. B., Can disorder induce a finite thermal conductivity in 1D lattices? Phys. Rev. Lett., 2001, 86(1): 63–66CrossRefADSGoogle Scholar
  66. 66.
    Likhachev V. N., Vinogradov G. A., Astakhova T. Y., and Yakovenko A. E., Dynamics, kinetics, and transport properties of the one-dimensional mass-disordered harmonic lattice. Phys. Rev. E, 2006, 73: 016701Google Scholar
  67. 67.
    Li B. W. and Wang J., Comment on “anomalous heat conduction and anomalous diffusion in one-dimensional systems” Reply. Phys. Rev. Lett., 2004, 92(8): 089402Google Scholar
  68. 68.
    Mao J. W. and Li Y. Q., Heat conductivity in the presence of a quantized degree of freedom, Europhys. Lett., 2006, 76(1): 42–48MathSciNetCrossRefADSGoogle Scholar
  69. 69.
    Dhar A. and Dhar D., Absence of local thermal equilibrium in two models of heat conduction, Phys. Rev. Lett., 1999, 82(3): 480–483CrossRefADSGoogle Scholar
  70. 70.
    Mejia-Monasterio C., Larralde H., and Leyvraz F., Coupled normal heat and matter transport in a simple model system, Phys. Rev. Lett., 2001, 86(24): 5417–5420CrossRefADSGoogle Scholar
  71. 71.
    Mao J. W. and Li Y. Q., Heat conduction in homogeneous and heterogeneous systems in local thermal equilibrium (at preprint)Google Scholar
  72. 72.
    Prosen T. and Robnik M., Energy transport and detailed verification of Fourier heat law in a chain of colliding harmonic oscillators, J. Phys. A, 1992, 25: 3449–3472CrossRefADSGoogle Scholar
  73. 73.
    Hu B. B., Li B. W., and Zhao H., Heat conduction in one-dimensional nonintegrable systems, Phys. Rev. E, 2000, 61(4): 3828–3831CrossRefADSGoogle Scholar
  74. 74.
    Zhao H., Identifying diffusion processes in one-dimensional lattices in thermal equilibrium, Phys. Rev. Lett., 2006, 96: 140502Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of PhysicsHuzhou Teachers CollegeHuzhouChina
  2. 2.Zhejiang Institute of Modern PhysicsZhejiang UniversityHangzhouChina

Personalised recommendations