Frontiers of Philosophy in China

, Volume 5, Issue 2, pp 294–311 | Cite as

Toward model-theoretic modal logics

Research Article


Adding certain cardinality quantifiers into first-order language will give substantially more expressive languages. Thus, many mathematical concepts beyond first-order logic can be handled. Since basic modal logic can be seen as the bisimular invariant fragment of first-order logic on the level of models, it has no ability to handle modally these mathematical concepts beyond first-order logic. By adding modalities regarding the cardinalities of successor states, we can, in principle, investigate modal logics of all cardinalities. Thus ways of exploring model-theoretic logics can be transferred to modal logics.


model theory first-order logic modal logic graded modalities 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barwise, J. and Feferman, S. (1985). Model-Theoretic Logics. SpringerGoogle Scholar
  2. Blackburn, P., de Rijke, M. and Venema, Y. (2001). Modal Logic. Cambridge: Cambridge University PressGoogle Scholar
  3. Cerrato, C. (1990). “General Canonical Models for Ggraded Normal Logics.” Studia Logica, Vol. 49Google Scholar
  4. de Caro, F. (1988). “Graded Modalities II (Canonical Models).” Studia Logica, Vol. 47Google Scholar
  5. de Rijke, M. (1993). Extending Modal Logic. Ph.D. diss., University of AmsterdamGoogle Scholar
  6. de Rijke, M. (2000). “A Note on Graded Modal Logic.” Studia Logica, Vol. 64Google Scholar
  7. Fattorosi-Barnaba, M. and de Caro, F. (1985). “Graded Modalities I.” Studia Logica, Vol. 44Google Scholar
  8. Fine, K. (1972). “In so Many Possible Worlds”. Notre Dame Journal of Formal Logic, Vol. XIII, No. 4Google Scholar
  9. Frege, G. (1979). “Logic.” In: Hermes, H. et al. ed. Posthumous Writings. Oxford: Basil BlackwellGoogle Scholar
  10. Goble, L. (1970). “Grades of Modality.” Logique et Analyse, Vol. 13Google Scholar
  11. Goldblatt, R. and Thomason, S. (1974). “Axiomatic Classes in Propositional Modal Logic.” In: Crossley, J. ed. Algebra and Logic. SpringerGoogle Scholar
  12. Goranko, V. and Otto, M. (2007). “Model Theory of Modal Logic.” In: van Benthem, J. et al. ed. Handbook of Modal Logic. ElsvierGoogle Scholar
  13. Mostowski, A. (1957). “On a Generalization of Quantifiers.” Fundamenta Mathematicae, Vol. 44Google Scholar
  14. Ohlbach, H., Schmidt, R. and Hustadt, U. (1996). “Translating Graded Modalities into Predicate Logic.” In: Wansing, H. ed. Proof Theory of Modal Logic (Studies in Applied Logic Series), Vol. 2. Dordrecht: Kluwer Academic PublishersGoogle Scholar
  15. Quine, W. (1953). From a Logical Point of View. Cambridge: Harvard University PressGoogle Scholar
  16. Tarski, A. (1941). Introduction to Logic and to the Methodology of Deductive Sciences. Oxford: Oxford University PressGoogle Scholar
  17. Ten Cate, B., van Benthem, J. and Vänäänen, J. (2007) “Lindström Theorems for Fragments of First-order Logic.” 22nd Annual IEEE Symposium on Logic in Computer Science, LICSGoogle Scholar
  18. van Benthem, J. (1983). Modal Logic and Classical Logic. Napoli: BibliopolisGoogle Scholar
  19. van Benthem, J. (2001). “Correspondence Theory.” In: Gabbay, D. M. and Guenthner, F. ed. Handbook of Philosophical Logic, 2nd edition, Vol. 3. Kluwer PublishersGoogle Scholar
  20. van der Hoek, W. and J.-J. Meyer (1992). “Graded Modalities in Epistemic Logic.” In: Logical Foundations of Computer Science -Tver’92 (Lecture Notes in Computer Science). SpringerGoogle Scholar
  21. van der Hoek, W. and de Rijke, M. (1993). “Generalized Quantifers and Modal Logic.” Journal of Logic, Language, and Information, Vol. 2Google Scholar
  22. van der Hoek, W. and de Rijke, M. (1995). “Counting Objects.” Journal of Logic and Computation, Vol. 5, No. 3Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of PhilosophyTsinghua UniversityBeijingChina

Personalised recommendations