Advertisement

Frontiers of Mechanical Engineering

, Volume 14, Issue 1, pp 113–127 | Cite as

Fatigue crack initiation of magnesium alloys under elastic stress amplitudes: A review

  • B. J. Wang
  • D. K. Xu
  • S. D. Wang
  • E. H. Han
Review Article
  • 68 Downloads

Abstract

The most advantageous property of magnesium (Mg) alloys is their density, which is lower compared with traditional metallic materials. Mg alloys, considered the lightest metallic structural material among others, have great potential for applications as secondary load components in the transportation and aerospace industries. The fatigue evaluation of Mg alloys under elastic stress amplitudes is very important in ensuring their service safety and reliability. Given their hexagonal close packed structure, the fatigue crack initiation of Mg and its alloys is closely related to the deformation mechanisms of twinning and basal slips. However, for Mg alloys with shrinkage porosities and inclusions, fatigue cracks will preferentially initiate at these defects, remarkably reducing the fatigue lifetime. In this paper, some fundamental aspects about the fatigue crack initiation mechanisms of Mg alloys are reviewed, including the 3 followings: 1) Fatigue crack initiation of as-cast Mg alloys, 2) influence of microstructure on fatigue crack initiation of wrought Mg alloys, and 3) the effect of heat treatment on fatigue initiation mechanisms. Moreover, some unresolved issues and future target on the fatigue crack initiation mechanism of Mg alloys are also described.

Keywords

Mg alloys fatigue behavior microstructure crack initiation deformation mechanism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51701129, 51271183 and 51301172), Initiation Foundation of Shenyang Ligong University for Doctoral Research, the National Basic Research Program of China (973 Program) (Grant No. 2013CB632205), the National Key Research and Development Program of China (Grant No. 2016YFB0301105), and Innovation Fund of Institute of Metal Research, Chinese Academy of Sciences.

References

  1. 1.
    Mordike B L, Ebert T. Magnesium: Properties—applications— potential. Materials Science and Engineering: A, 2001, 302(1): 37–45CrossRefGoogle Scholar
  2. 2.
    Mayer H, Papakyriacou M, Zettl B, et al. Influence of porosity on the fatigue limit of die cast magnesium and aluminium alloys. International Journal of Fatigue, 2003, 25(3): 245–256CrossRefGoogle Scholar
  3. 3.
    Chapetti M, Tagawa T, Miyata T. Ultra-long cycle fatigue of highstrength carbon steels Part II: Estimation of fatigue limit for failure from internal inclusions. Materials Science and Engineering: A, 2003, 356(1–2): 236–244CrossRefGoogle Scholar
  4. 4.
    Eisenmeier G, Holzwarth B, Höppel H W. Cyclic deformation and fatigue behaviour of the magnesium alloy AZ91. Materials Science and Engineering: A, 2001, 319–321: 578–582CrossRefGoogle Scholar
  5. 5.
    Xu D, Liu L, Xu Y, et al. The fatigue behavior of I-phase containing as-cast Mg-Zn-Y-Zr alloy. Acta Materialia, 2008, 56(5): 985–994CrossRefGoogle Scholar
  6. 6.
    Tokaji K, Kamakura M. Fatigue behaviour and fracture mechanism of a rolled AZ31 magnesium alloy. International Journal of Fatigue, 2004, 26(11): 1217–1224CrossRefGoogle Scholar
  7. 7.
    Lv F, Yang F, Duan Q, et al. Fatigue properties of rolled magnesium alloy (AZ31) sheet: Influence of specimen orientation. International Journal of Fatigue, 2011, 33(5): 672–682CrossRefGoogle Scholar
  8. 8.
    Yang F, Yin S, Li S, et al. Crack initiation mechanism of extruded AZ31 magnesium alloy in the very high cycle fatigue regime. Materials Science and Engineering: A, 2008, 491(1–2): 131–136CrossRefGoogle Scholar
  9. 9.
    Uematsu Y, Kakiuchi T, Tamada K, et al. EBSD analysis of fatigue crack initiation behavior in coarse-grained AZ31 magnesium alloy. International Journal of Fatigue, 2016, 84: 1–8CrossRefGoogle Scholar
  10. 10.
    Yu D, Zhang D, Sun J, et al. High cycle fatigue behavior of extruded and double-aged Mg-6Zn-1Mn alloy. Materials Science and Engineering: A, 2016, 662: 1–8CrossRefGoogle Scholar
  11. 11.
    Wang S, Xu D, Wang B, et al. Effect of solution treatment on the fatigue behavior of an as-forged Mg-Zn-Y-Zr alloy. Scientific Reports, 2016, 6(1): 23955CrossRefGoogle Scholar
  12. 12.
    Xu D, Han E. Effect of yttrium content on the ultra-high cycle fatigue behavior of Mg-Zn-Y-Zr alloys. Materials Science Forum, 2015, 816: 333–336CrossRefGoogle Scholar
  13. 13.
    Xu D, Han E. Relationship between fatigue crack initiation and activated {1012} twins in as-extruded pure magnesium. Scripta Materialia, 2013, 69(9): 702–705CrossRefGoogle Scholar
  14. 14.
    Xu D, Liu L, Xu Y, et al. The micro-mechanism of fatigue crack propagation for a forged Mg-Zn-Y-Zr alloy in the gigacycle fatigue regime. Journal of Alloys and Compounds, 2008, 454(1–2): 123–128CrossRefGoogle Scholar
  15. 15.
    Xu D, Liu L, Xu Y, et al. The crack initiation mechanism of the forged Mg-Zn-Y-Zr alloy in the super-long fatigue life regime. Scripta Materialia, 2007, 56(1): 1–4CrossRefGoogle Scholar
  16. 16.
    Shih T, Liu W, Chen Y. Fatigue of as-extruded AZ61A magnesium alloy. Materials Science and Engineering: A, 2002, 325(1–2): 152–162CrossRefGoogle Scholar
  17. 17.
    Zenner H, Renner F. Cyclic material behaviour of magnesium die castings and extrusions. International Journal of Fatigue, 2002, 24 (12): 1255–1260CrossRefGoogle Scholar
  18. 18.
    Wang B, Xu D, Dong J, et al. Effect of the crystallographic orientation and twinning on the corrosion resistance of an as-extruded Mg-3Al-1Zn (wt.%) bar. Scripta Materialia, 2014, 88: 5–8CrossRefGoogle Scholar
  19. 19.
    Potzies C, Kainer K U. Fatigue of magnesium alloys. Advanced Engineering Materials, 2004, 6(5): 281–289CrossRefGoogle Scholar
  20. 20.
    Sajuri Z B, Miyashita Y, Hosokai Y, et al. Effects of Mn content and texture on fatigue properties of as-cast and extruded AZ61 magnesium alloys. International Journal of Mechanical Sciences, 2006, 48(2): 198–209CrossRefzbMATHGoogle Scholar
  21. 21.
    Horstemeyer M F, Yang N, Gall K, et al. High cycle fatigue of a die cast AZ91E-T4 magnesium alloy. Acta Materialia, 2004, 52(5): 1327–1336CrossRefGoogle Scholar
  22. 22.
    Mayer H, Lipowsky H, Papakyriacou M, et al. Application of ultrasound for fatigue testing of lightweight alloys. Fatigue & Fracture of Engineering Materials & Structures, 1999, 22(7): 591–599CrossRefGoogle Scholar
  23. 23.
    Bae D H, Kim S H, Kim D H, et al. Deformation behavior of Mg- Zn-Y alloys reinforced by icosahedral quasicrystalline particles. Acta Materialia, 2002, 50(9): 2343–2356CrossRefGoogle Scholar
  24. 24.
    Li Z, Fu P, Peng L, et al. Comparison of high cycle fatigue behaviors of Mg-3Nd-0.2Zn-Zr alloy prepared by different casting processes. Materials Science and Engineering: A, 2013, 579: 170–179CrossRefGoogle Scholar
  25. 25.
    Wang S, Xu D, Wang B, et al. Effect of corrosion attack on the fatigue behavior of an as-cast Mg-7%Gd-5%Y-1%Nd-0.5%Zr alloy. Materials & Design, 2015, 84: 185–193CrossRefGoogle Scholar
  26. 26.
    Murakami Y, Kodama S, Konuma S. Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. I: Basic fatigue mechanism and evaluation of correlation between the fatigue fracture stress and the size and location of non-metallic inclusions. International Journal of Fatigue, 1989, 11(5): 291–298Google Scholar
  27. 27.
    Polak J, Man J, Obrtlik K. AFM evidence of surface relief formation and models of fatigue crack nucleation. International Journal of Fatigue, 2003, 25(9–11): 1027–1036CrossRefGoogle Scholar
  28. 28.
    Mughrabi H. Dislocation clustering and long-range internal stresses in monotonically and cyclically deformed metal crystals. Revue de Physique Appliquée (Paris), 1988, 23(4): 367–379CrossRefGoogle Scholar
  29. 29.
    Harvey S E, Marsh P G, Gerberich W W. Atomic force microscopy and modeling of fatigue crack initiation in metals. Acta Metallurgica et Materialia, 1994, 42(10): 3493–3502CrossRefGoogle Scholar
  30. 30.
    Man J, Obrtlik K, Blochwitz C, et al. Atomic force microscopy of surface relief in individual grains of fatigued 316L austenitic stainless steel. Acta Materialia, 2002, 50(15): 3767–3780CrossRefGoogle Scholar
  31. 31.
    Polák J, Man J, Vystavel T, et al. The shape of extrusions and intrusions and initiation of stage I fatigue cracks. Materials Science and Engineering: A, 2009, 517(1–2): 204–211CrossRefGoogle Scholar
  32. 32.
    Yin S, Yang F, Yang X, et al. The role of twinning-detwinning on fatigue fracture morphology of Mg-3%Al-1%Zn alloy. Materials Science and Engineering: A, 2008, 494(1–2): 397–400CrossRefGoogle Scholar
  33. 33.
    Cáceres C H, Sumitomo T, Veidt M. Pseudoelastic behaviour of cast magnesium AZ91 alloy under cyclic loading-unloading. Acta Materialia, 2003, 51(20): 6211–6218CrossRefGoogle Scholar
  34. 34.
    Obara T, Yoshinga H, Morozumi S. {1122}<1123>Slip system in magnesium. Acta Metallurgica, 1973, 21(7): 845–853CrossRefGoogle Scholar
  35. 35.
    Ion S E, Humphreys F J, White S H. Dynamic recrystallisation and the development of microstructure during the high temperature deformation of magnesium. Acta Metallurgica, 1982, 30(10): 1909–1919CrossRefGoogle Scholar
  36. 36.
    Yu Q, Zhang J, Jiang Y. Fatigue damage development in pure polycrystalline magnesium under cyclic tension-compression loading. Materials Science and Engineering: A, 2011, 528(25–26): 7816–7826CrossRefGoogle Scholar
  37. 37.
    Lahaie D, Embury J D, Chadwick M M, et al. A note on the deformation of fine grained magnesium alloys. Scripta Metallurgica et Materialia, 1992, 27(2): 139–142CrossRefGoogle Scholar
  38. 38.
    Barnett MR, Keshavarz Z, Beer A G, et al. Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn. Acta Materialia, 2004, 52(17): 5093–5103CrossRefGoogle Scholar
  39. 39.
    Barnett M R. A rationale for the strong dependence of mechanical twinning on grain size. Scripta Materialia, 2008, 59(7): 696–698CrossRefGoogle Scholar
  40. 40.
    Li Z, Wang Q, Luo A, et al. High cycle fatigue of cast Mg-3Nd- 0.2Zn magnesium alloys. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science, 2013, 44(11): 5202–5215CrossRefGoogle Scholar
  41. 41.
    Li Z, Fu P, Peng L, et al. Influence of solution temperature on fatigue behavior of AM-SC1 cast magnesium alloy. Materials Science and Engineering: A, 2013, 565: 250–257CrossRefGoogle Scholar
  42. 42.
    Bag A, Zhou W. Tensile and fatigue behavior of AZ91D magnesium alloy. Journal of Materials Science Letters, 2001, 20(5): 457–459CrossRefGoogle Scholar
  43. 43.
    Dong J, Liu W C, Song X, et al. Influence of heat treatment on fatigue behaviour of high-strength Mg-10Gd-3Y alloy. Materials Science and Engineering: A, 2010, 527(21–22): 6053–6063CrossRefGoogle Scholar
  44. 44.
    Adams J F, Allison J E, Jones J W. The effects of heat treatment on very high cycle fatigue behavior in hot-rolled WE43 magnesium. International Journal of Fatigue, 2016, 93: 372–386CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • B. J. Wang
    • 1
  • D. K. Xu
    • 2
  • S. D. Wang
    • 2
  • E. H. Han
    • 2
  1. 1.School of Environmental and Chemical EngineeringShenyang Ligong UniversityShenyangChina
  2. 2.CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal ResearchChinese Academy of SciencesShenyangChina

Personalised recommendations