Advertisement

Frontiers of Mechanical Engineering

, Volume 9, Issue 1, pp 41–49 | Cite as

Thermal buckling behavior of laminated composite plates: a finite-element study

  • Houdayfa Ounis
  • Abdelouahab Tati
  • Adel BenchabaneEmail author
Research Article

Abstract

In this paper, the thermal buckling behavior of composite laminated plates under a uniform temperature distribution is studied. A finite element of four nodes and 32 degrees of freedom (DOF), previously developed for the bending and mechanical buckling of laminated composite plates, is extended to investigate the thermal buckling behavior of laminated composite plates. Based upon the classical plate theory, the present finite element is a combination of a linear isoparametric membrane element and a high precision rectangular Hermitian element. The numerical implementation of the present finite element allowed the comparison of the numerical obtained results with results obtained from the literature: 1) with element of the same order, 2) the first order shear deformation theory, 3) the high order shear deformation theory and 4) the three-dimensional solution. It was found that the obtained results were very close to the reference results and the proposed element offers a good convergence speed. Furthermore, a parametrical study was also conducted to investigate the effect of the anisotropy of composite materials on the critical buckling temperature of laminated plates. The study showed that: 1) the critical buckling temperature generally decreases with the increasing of the modulus ratio E L/E T and thermal expansion ratio α T/α L, and 2) the boundary conditions and the orientation angles significantly affect the critical buckling temperature of laminated plates.

Keywords

thermal buckling laminated composite plates anisotropy critical buckling temperature finite-element method high precision rectangular Hermitian element 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gill S, Gupta M, Satsangi P S. Prediction of cutting forces in machining of unidirectional glass fiber reinforced plastics composite. Frontiers of Mechanical Engineering, 2013, 8(2): 187–200CrossRefGoogle Scholar
  2. 2.
    Thornton E A. Thermal Structures for Aerospace Applications. Reston, VA: AIAA, 1996CrossRefGoogle Scholar
  3. 3.
    Jones R M. Buckling of Bars, Plates, and Shells. Blacksburg Virginia: Bull Ridge Publishing, 2006Google Scholar
  4. 4.
    Tati A, Abibsi A. Un element fini pour la flexion et le flambage des plaques minces stratifiees en materiaux composites. Revue Des Composites Et Des Materiaux Avances, 2007, 17(3): 279–296CrossRefGoogle Scholar
  5. 5.
    Zhang Y X, Yang C H. Recent developments in finite element analysis for laminated composite plates. Composite Structures, 2009, 88(1): 147–157CrossRefGoogle Scholar
  6. 6.
    Chen W J, Lin P D, Chen L W. Thermal buckling behavior of thick composite laminated plates under nonuniform temperature distribution. Computers & Structures, 1991, 41(4): 637–645zbMATHCrossRefGoogle Scholar
  7. 7.
    Chen W J, Lin P D, Chen L W. Thermal buckling behaviour of composite laminated plates with a circular hole. Composite Structures, 1991, 18(4): 379–397zbMATHCrossRefGoogle Scholar
  8. 8.
    Huang N N, Tauchert T R. Thermal buckling of clamped symmetric laminated plates. Thin-walled Structures, 1992, 13(4): 259–273CrossRefGoogle Scholar
  9. 9.
    Noor A K, Peters J M. Thermomechanical buckling of multilayered composite plates. Journal of Engineering Mechanics, 1992, 118(2): 351–366CrossRefGoogle Scholar
  10. 10.
    Noor A K, Peters J M. Finite element buckling and postbuckling solutions for multilayered composite panels. Finite Elements in Analysis and Design, 1994, 15(4): 343–367zbMATHCrossRefGoogle Scholar
  11. 11.
    Noor A K, Starnes J H, Peters J M. Thermomechanical buckling of multilayered composite panels with cutouts. AIAA Journal, 1994, 32(7): 1507–1519CrossRefGoogle Scholar
  12. 12.
    Noor A K, Starnes J H Jr, Peters J M. Thermomechanical buckling and postbuckling of multilayered composite panels. Composite Structures, 1993, 23(3): 233–251CrossRefGoogle Scholar
  13. 13.
    Chandrashekhara K. Thermal buckling of laminated plates using a shear flexible finite element. Finite Elements in Analysis and Design, 1992, 12(1): 51–61zbMATHCrossRefGoogle Scholar
  14. 14.
    Prabhu M R, Dhanaraj R. Thermal buckling of laminated composite plates. Computers & Structures, 1994, 53(5): 1193–1204zbMATHCrossRefGoogle Scholar
  15. 15.
    Lee Y S, Lee Y W, Yang M S, Park B S. Optimal design of thick laminated composite plates for maximum thermal buckling load. Journal of Thermal Stresses, 1999, 22(3): 259–273CrossRefGoogle Scholar
  16. 16.
    Topal U, Uzman Ü. Thermal buckling load optimization of laminated composite plates. Thin-walled Structures, 2008, 46(6): 667–675CrossRefGoogle Scholar
  17. 17.
    Topal U, Uzman Ü. Thermal buckling load optimization of laminated skew plates. Materials & Design, 2009, 30(7): 2569–2575CrossRefGoogle Scholar
  18. 18.
    Walker M, Reiss T, Adali S, Verijenko V E. Optimal design of symmetrically laminated plates for maximum buckling temperature. Journal of Thermal Stresses, 1997, 20(1): 21–33CrossRefGoogle Scholar
  19. 19.
    Kant T, Babu C S. Thermal buckling analysis of skew fibrereinforced composite and sandwich plates using shear deformable finite element models. Composite Structures, 2000, 49(1): 77–85CrossRefGoogle Scholar
  20. 20.
    Singha M K, Ramachandra L, Bandyopadhyay J. Stability and strength of composite skew plates under thermomechanical loads. AIAA Journal, 2001, 39(8): 1618–1623CrossRefGoogle Scholar
  21. 21.
    Kabir H R H, Askar H, Chaudhuri R A. Thermal buckling response of shear flexible laminated anisotropic plates using a three-node isoparametric element. Composite Structures, 2003, 59(2): 173–187CrossRefGoogle Scholar
  22. 22.
    Şahin Ö S. Thermal buckling of hybrid angle-ply laminated composite plates with a hole. Composites Science and Technology, 2005, 65(11–12): 1780–1790Google Scholar
  23. 23.
    Avci A, Kaya S, Daghan B. Thermal buckling of rectangular laminated plates with a hole. Journal of Reinforced Plastics and Composites, 2005, 24(3): 259–272CrossRefGoogle Scholar
  24. 24.
    Chang J S. FEM analysis of buckling and thermal buckling of antisymmetric angle-ply laminates according to transverse shear and normal deformable high order displacement theory. Computers & Structures, 1990, 37(6): 925–946zbMATHCrossRefGoogle Scholar
  25. 25.
    Chang J S, Shiao F J. Thermal buckling analysis of isotropic and composite plates with a hole. Journal of Thermal Stresses, 1990, 13(3): 315–332CrossRefGoogle Scholar
  26. 26.
    Babu C S, Kant T. Refined higher order finite element models for thermal buckling of laminated composite and sandwich plates. Journal of Thermal Stresses, 2000, 23(2): 111–130CrossRefGoogle Scholar
  27. 27.
    Wu Z, Chen W. Thermomechanical buckling of laminated composite and sandwich plates using global-local higher order theory. International Journal of Mechanical Sciences, 2007, 49(6): 712–721CrossRefGoogle Scholar
  28. 28.
    Lal A, Singh B N, Kumar R. Effects of random system properties on the thermal buckling analysis of laminated composite plates. Computers & Structures, 2009, 87(17–18): 1119–1128CrossRefGoogle Scholar
  29. 29.
    Shiau L C, Kuo S Y, Chen C Y. Thermal buckling behavior of composite laminated plates. Composite Structures, 2010, 92(2): 508–514CrossRefGoogle Scholar
  30. 30.
    Thangaratnam K R, Palaninathan, Ramachandran J. Thermal buckling of composite laminated plates. Computers & Structures, 1989, 32(5): 1117–1124zbMATHCrossRefGoogle Scholar
  31. 31.
    Chen L W, Chen L Y. Thermal buckling analysis of composite laminated plates by the finite-element method. Journal of Thermal Stresses, 1989, 12(1): 41–56CrossRefGoogle Scholar
  32. 32.
    Chen L W, Chen L Y. Thermal buckling behavior of laminated composite plates with temperature-dependent properties. Composite Structures, 1989, 13(4): 275–287CrossRefGoogle Scholar
  33. 33.
    Chen L W, Chen L Y. Thermal buckling analysis of laminated cylindrical plates by the finite element method. Computers & Structures, 1990, 34(1): 71–78zbMATHCrossRefGoogle Scholar
  34. 34.
    Topal U, Uzman Ü. Effect of rectangular/circular cutouts on thermal buckling load optimization of angle-ply laminated thin plates. Science and Engineering of Composite Materials, 2010, 17(2): 93–110CrossRefGoogle Scholar
  35. 35.
    Lee J. Thermally induced buckling of laminated composites by a layerwise theory. Computers & Structures, 1997, 65(6): 917–922zbMATHCrossRefGoogle Scholar
  36. 36.
    Shariyat M. Thermal buckling analysis of rectangular composite plates with temperature-dependent properties based on a layerwise theory. Thin-walled Structures, 2007, 45(4): 439–452CrossRefGoogle Scholar
  37. 37.
    Kumar S, Singh B. Thermal buckling analysis of sma fiberreinforced composite plates using layerwise model. Journal of Aerospace Engineering, 2009, 22(4): 342–353CrossRefGoogle Scholar
  38. 38.
    Nali P, Carrera E. Accurate buckling analysis of composite layered plates with combined thermal and mechanical loadings. Journal of Thermal Stresses, 2013, 36(1): 1–18CrossRefGoogle Scholar
  39. 39.
    Shi Y, Lee R Y Y, Mei C. Thermal postbuckling of composite plates using the finite element modal coordinate method. Journal of Thermal Stresses, 1999, 22(6): 595–614CrossRefGoogle Scholar
  40. 40.
    Zhao X, Lee Y Y, Liew K M. Mechanical and thermal buckling analysis of functionally graded plates. Composite Structures, 2009, 90(2): 161–171CrossRefGoogle Scholar
  41. 41.
    Matsunaga H. Thermal buckling of cross-ply laminated composite and sandwich plates according to a global higher-order deformation theory. Composite Structures, 2005, 68(4): 439–454CrossRefGoogle Scholar
  42. 42.
    Noor A, Burton W. Three-dimensional solutions for thermal buckling of multilayered anisotropic plates. Journal of Engineering Mechanics, 1992, 118(4): 683–701CrossRefGoogle Scholar
  43. 43.
    Dhatt G, Touzot G. Une présentation de la méthode des éléments finis. France: Maloine, 1981zbMATHGoogle Scholar
  44. 44.
    Whitney J M, Ashton J E. Effect of environment on the elastic response of layered composite plates. AIAA Journal, 1971, 9(9): 1708–1713CrossRefGoogle Scholar
  45. 45.
    Chen L W, Chen L Y. Thermal buckling of laminated composite plates. Journal of Thermal Stresses, 1987, 10(4): 345–356CrossRefGoogle Scholar
  46. 46.
    Chen W C, Liu W H. Thermal buckling of antisymmetric angle-ply laminated plates-an analytical levy-type solution. Journal of Thermal Stresses, 1993, 16(4): 401–419CrossRefGoogle Scholar
  47. 47.
    Chen L W, Brunelle E J, Chen L Y. Thermal buckling of initially stressed thick plates. Journal of Mechanical Design, 1982, 104(3): 557–564CrossRefGoogle Scholar
  48. 48.
    Jones R M. Thermal buckling of uniformly heated unidirectional and symmetric cross-ply laminated fiber-reinforced composite uniaxial in-plane restrained simply supported rectangular plates. Composites. Part A, Applied Science and Manufacturing, 2005, 36(10): 1355–1367CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Houdayfa Ounis
    • 1
  • Abdelouahab Tati
    • 1
  • Adel Benchabane
    • 1
    Email author
  1. 1.Laboratoire de Génie Energétique et Matériaux (LGEM)Université de BiskraBiskraAlgeria

Personalised recommendations