Advertisement

Frontiers of Mechanical Engineering

, Volume 8, Issue 3, pp 215–243 | Cite as

Additive manufacturing: technology, applications and research needs

  • Nannan Guo
  • Ming C. Leu
Review Article

Abstract

Additive manufacturing (AM) technology has been researched and developed for more than 20 years. Rather than removing materials, AM processes make three-dimensional parts directly from CAD models by adding materials layer by layer, offering the beneficial ability to build parts with geometric and material complexities that could not be produced by subtractive manufacturing processes. Through intensive research over the past two decades, significant progress has been made in the development and commercialization of new and innovative AM processes, as well as numerous practical applications in aerospace, automotive, biomedical, energy and other fields. This paper reviews the main processes, materials and applications of the current AM technology and presents future research needs for this technology.

Keywords

additive manufacturing (AM) AM processes AM materials AM applications 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    ASTM. ASTM F 2792-10 standard terminology for additive manufacturing technologiesGoogle Scholar
  2. 2.
    Jacobs P F. Rapid Prototyping & Manufacturing: Fundamentals of Stereolithography. Dearborn: SME publication, 1992Google Scholar
  3. 3.
    Comb JW, Priedeman WR, Turley PW. FDM technology process improvements. In: Proceedings of Solid Freeform Fabrication Symposium. Austin, TX, 1994, 42–49Google Scholar
  4. 4.
    Beaman J J, Barlow JW, Bourell D L, Barlow JW, Crawford R H, McAlea K P. Solid Freeform Fabrication: A New Direction in Manufacturing. Norwell: Kluwer Academic Publishers, 1997, 25–49CrossRefGoogle Scholar
  5. 5.
    Feygin M, Hsieh B. Laminated object manufacturing (LOM): a simpler process. In: Proceedings of Solid Freeform Fabrication Symposium. Austin, TX, 1991, 123–130Google Scholar
  6. 6.
    Sachs M E, Haggerty J S, Cima M J, Williams P A. Three dimensional printing techniques. US Patent, 5204055, 1993Google Scholar
  7. 7.
    Mazumder J, Schifferer A, Choi J. Direct materials deposition: designed macro and microstructure. Materials Research Innovations, 1999, 3(3): 118–131CrossRefGoogle Scholar
  8. 8.
    Waterman N A, Dickens P. Rapid product development in the USA, Europe and Japan. World Class Design to Manufacture, 1994, 1(3): 27–36CrossRefGoogle Scholar
  9. 9.
    Thomas C L, Gaffney TM, Kaza S, Lee C H. Rapid prototyping of large scale aerospace structures. In: Proceedings of Aerospace Applications Conference IEEE. Aspen, CO, 1996, 4: 219–230Google Scholar
  10. 10.
    Song Y, Yan Y, Zhang R, Xu D, Wang F. Manufacturing of the die of an automobile deck part based on rapid prototyping and rapid tooling technology. Journal of Materials Processing Technology, 2002, 120(1–3): 237–242CrossRefGoogle Scholar
  11. 11.
    Giannatsis J, Dedoussis V. Dedoussis. Additive fabrication technologies applied to medicine and health care: a review. International Journal of Advanced Manufacturing Technology, 2009, 40(1–2): 116–127CrossRefGoogle Scholar
  12. 12.
    Sachlos E, Czernuszka J T. Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. European Cells & Materials, 2003, 5: 29–39, discussion 39–40Google Scholar
  13. 13.
    Pham D T, Dimov S S. Rapid prototyping and rapid tooling — the key enablers for rapid manufacturing. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2003, 217(1): 1–23CrossRefGoogle Scholar
  14. 14.
    Onuh S O, Yusuf Y Y. Rapid prototyping technology: applications and benefits for rapid product development. Journal of Intelligent Manufacturing, 1999, 10(3/4): 301–311CrossRefGoogle Scholar
  15. 15.
    Goldsberry C. Rapid change in additive manufacturing landscape. http://www.plasticstoday.com/articles/rapid-change-additive-manufacturing-landscape. 2009Google Scholar
  16. 16.
    Kruth J P. Material increase manufacturing by rapid prototyping techniques. CIRP Annals-Manufacturing Technology, 1991, 40(2): 603–614CrossRefGoogle Scholar
  17. 17.
    Kruth J P, Leu M C, Nakagawa T. Progress in additive manufacturing and rapid prototyping. CIRP Annals-Manufacturing Technology, 1998, 47(2): 525–540CrossRefGoogle Scholar
  18. 18.
    Brady A G, Halloran J W. Stereolithography of ceramic suspensions. Rapid Prototyping Journal, 1997, 3(2): 61–65CrossRefGoogle Scholar
  19. 19.
    Doreau F, Chaput C, Chartier T. Stereolithography for manufacturing ceramic parts. Advanced Engineering Materials, 2000, 2(8): 493–496CrossRefGoogle Scholar
  20. 20.
    Chartier T, Chaput C, Doreau F, Loiseau M. Stereolithography of structural complex ceramic parts. Journal of Materials Science, 2002, 37(15): 3141–3147CrossRefGoogle Scholar
  21. 21.
    Monneret S, Loubere V, Corbel S. Microstereolithography using dynamic mask generator and a non-coherent visible light source. Proceedings of the Society for Photo-Instrumentation Engineers, 1999, 3680: 553–561Google Scholar
  22. 22.
    Sun C, Fang N, Wu D M, Zhang X. Projection microstereolighography using digital micro-mirror dynamic mask. Sensors and Actuators. A, Physical, 2005, 121(1): 113–120Google Scholar
  23. 23.
    Chua C K, Leong K F, Lim C S. Rapid Prototyping: Principles and Applications. 3rd ed. Singapore: World Scientific Publishing Company, 2010, 165–171CrossRefGoogle Scholar
  24. 24.
    Zhang W, Leu M C, Ji Z, Yan Y. Rapid freezing prototyping with water. Materials & Design, 1999, 20(2–3): 139–145CrossRefGoogle Scholar
  25. 25.
    Leu M C, Zhang W, Sui G. An experimental and analytical study of ice part fabrication with rapid freeze prototyping. CIRP Annals-Manufacturing Technology, 2000, 49(1): 147–150CrossRefGoogle Scholar
  26. 26.
    Leu M C. Rapid freeze prototyping. Materials World Journal, 2000: 9–11Google Scholar
  27. 27.
    Liu Q, Sui G, Leu M C. Experimental study on the ice pattern fabrication for the investment casting by rapid freeze prototyping. Computers in Industry, 2002, 48(3): 181–197CrossRefGoogle Scholar
  28. 28.
    Bryant F D, Sui G, Leu M C. A study on effects of process parameters in rapid freeze prototyping. Rapid Prototyping Journal, 2003, 9(1): 19–23CrossRefGoogle Scholar
  29. 29.
    Crump S S. Fused deposition modeling (FDM): putting rapid back into prototyping. In: The 2nd International Conference on Rapid Prototyping. Dayton, Ohio, 1991: 354–357Google Scholar
  30. 30.
    Jafari M A, Han W, Mohammadi F, Safari A, Danforth S C, Langrana N. A novel system for fused deposition of advanced multiple ceramics. Rapid Prototyping Journal, 2000, 6(3): 161–175CrossRefGoogle Scholar
  31. 31.
    Khalil S, Nam J, Sun W. Multi-nozzle deposition for construction of 3D biopolymer tissue scaffolds. Rapid Prototyping Journal, 2005, 11(1): 9–17CrossRefGoogle Scholar
  32. 32.
    Bellini A, Shor L, Guceri S I. New developments in fused deposition modeling of ceramics. Rapid Prototyping Journal, 2005, 11(4): 214–220CrossRefGoogle Scholar
  33. 33.
    Robocasting Enterprises L L C. http://www.robocasting.net/
  34. 34.
    Russias J, Saiz E, Deville S, Gryn K, Liu G, Nalla R K, Tomsia A P. Fabrication and in vitro characterization of three-dimensional organic/inorganic scaffolds by robocasting. Journal of Biomedical Materials Research. Part A, 2007, 83(2): 434–445CrossRefGoogle Scholar
  35. 35.
    Mason M S, Huang T, Landers R G, Leu M C, Hilmas G E. Aqueous based extrusion of high solids loading ceramic pastes: process modeling and control. Journal of Materials Processing Technology, 2009, 209(6): 2946–2957CrossRefGoogle Scholar
  36. 36.
    Huang T, Mason M S, Hilmas G E, Leu M C. Aqueous based freeze-form extrusion fabrication of alumina components. Rapid Prototyping Journal, 2009, 15(2): 88–95CrossRefGoogle Scholar
  37. 37.
    Liu H J, Leu M C. Liquid phase migration in extrusion of aqueous alumina paste for freeze-form extrusion fabrication. International Journal of Modern Physics B, 2009, 23(06n07): 1861–1866CrossRefGoogle Scholar
  38. 38.
    Liu H J, Leu M C. Research on extrusion velocity in freeform extrusion fabrication of aqueous alumina paste. Key Engineering Materials, 2009, 419–420: 125–128CrossRefGoogle Scholar
  39. 39.
    Pham D T, Dimov S, Lacan F. Selective laser sintering: applications and technological capabilities. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 1999, 213(5): 435–449CrossRefGoogle Scholar
  40. 40.
    Das S, Wohlert M, Beaman J J, Bourell D L. Producing metal parts with selective laser sintering/hot isostatic pressing. Journal of Materials, 1998, 50(12): 17–20Google Scholar
  41. 41.
    Kruth J P, Levy G, Klocke F, Childs T H C. Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Annals-Manufacturing Technology, 2007, 56(2): 730–759CrossRefGoogle Scholar
  42. 42.
    Kruth J P, Vandenbroucke B, Vaerenbergh J V, Mercelis P. Benchmarking of different SLS/SLM processes as rapid manufacturing techniques. In: Proceedings of International Conference Polymers & Moulds Innovations (PMI). Gent, Belgium, 2005Google Scholar
  43. 43.
    Kruth J P, Mercelis P, Vaerenbergh J V, Froyen L, Rombouts M. Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyping Journal, 2005, 11(1): 26–36CrossRefGoogle Scholar
  44. 44.
    Kumar S. Selective laser sintering: a qualitative and objective approach. JOM, 2003, 55(10): 43–47CrossRefGoogle Scholar
  45. 45.
    Levy G N, Schindel R, Kruth J P. Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives. CIRP Annals-Manufacturing Technology, 2003, 52(2): 589–609CrossRefGoogle Scholar
  46. 46.
    Kruth J P, Froyen L, Van Vaerenbergh J, Mercelis P, Rombouts M, Lauwers B. Selective laser melting of iron-based powder. Journal of Materials Processing Technology, 2004, 149(1–3): 616–622CrossRefGoogle Scholar
  47. 47.
    Abe F, Osakada K, Shiomi M, Uematsu K, Matsumoto M. The manufacturing of hard tools from metallic powders by selective laser melting. Journal of Materials Processing Technology, 2001, 111(1–3): 210–213CrossRefGoogle Scholar
  48. 48.
    Lu L, Fuh J, Chen Z, Leong C C, Wong Y S. In situ formation of TiC composite using selective laser melting. Materials Research Bulletin, 2000, 35(9): 1555–1561CrossRefGoogle Scholar
  49. 49.
    Osakada K, Shiomi M. Flexible manufacturing of metallic products by selective laser melting of powder. International Journal of Machine Tools & Manufacture, 2006, 46(11): 1188–1193CrossRefGoogle Scholar
  50. 50.
    Cormier D, Harrysson O, West H. Characterization of H13 steel produced via electron beam melting. Rapid Prototyping Journal, 2004, 10(1): 35–41CrossRefGoogle Scholar
  51. 51.
    Heinl P, Rottmair A, Korner C, Singer R F. Cellular titanium by selective electron beam melting. Advanced Engineering Materials, 2007, 9(5): 360–364CrossRefGoogle Scholar
  52. 52.
    Rännar L E, Glad A, Gustafson C G. Efficient cooling with tool inserts manufactured by electron beam melting. Rapid Prototyping Journal, 2007, 13(3): 128–135CrossRefGoogle Scholar
  53. 53.
    Harrysson O, Cansizoglu O, Marcellin-Little D J, Cormier D R, West H A II. Direct metal fabrication of titanium implants with tailored materials and mechanical properties using electron beam melting technology. Materials Science and Engineering C, 2008, 28(3): 366–373CrossRefGoogle Scholar
  54. 54.
    Cormier D, West H, Harrysson O, Knowlson K. Characterization of thin walled Ti-6Al-4V components produced via electron beam melting. In: Proceeding of Solid Freeform Fabrication Symposium. Austin, TX, 2004Google Scholar
  55. 55.
    Heinl P, Müller L, Körner C, Singer R F, Müller F A. Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomaterialia, 2008, 4(5): 1536–1544CrossRefGoogle Scholar
  56. 56.
    Gasser A, Backes G, Kelbassa I, Weisheit A, Wissenbach K. Laser additive manufacturing: laser metal deposition (LMD) and selective laser melting (SLM) in turbo-engine applications. Laser Material Processing, 2010, 2: 58–63Google Scholar
  57. 57.
    Balla V K, DeVasConCellos P D, Xue W, Bose S, Bandyopadhyay A. Fabrication of compositionally and structurally graded Ti-TiO2 structures using laser engineered net shaping (LENS). Acta Biomaterialia, 2009, 5(5): 1831–1837CrossRefGoogle Scholar
  58. 58.
    Lewis G K, Schlienger E. Practical considerations and capabilities for laser assisted direct metal deposition. Materials & Design, 2000, 21(4): 417–423CrossRefGoogle Scholar
  59. 59.
    Zhang K, Liu W, Shang X. Research on the processing experiments of laser metal deposition shaping. Optics & Laser Technology, 2007, 39(3): 549–557MathSciNetCrossRefGoogle Scholar
  60. 60.
    Lewis G K. Direct laser metal deposition process fabricates nearnet-shape components rapidly. Materials Technology, 1995, 10(3): 51–54Google Scholar
  61. 61.
    Hofmeister W, Griffith M, Ensz M, Smugeresky J. Solidification in direct metal deposition by LENS processing. JOM, 2001, 53(9): 30–34CrossRefGoogle Scholar
  62. 62.
    Sachs E, Cima M, Cornie J, Brancazio D, Bredt J, Curodeau A, Fan T, Khanuja S, Lauder A, Lee J, Michaels S. Three-dimensional printing: the physics and implications of additive manufacturing. CIRP Annals-Manufacturing Technology, 1993, 42(1): 257–260CrossRefGoogle Scholar
  63. 63.
    Melican M C, Zimmerman M C, Dhillon M S, Ponnambalam A R, Curodeau A, Parsons J R. Three-dimensional printing and porous metallic surfaces: a new orthopedic application. Journal of Biomedical Materials Research, 2001, 55(2): 194–202CrossRefGoogle Scholar
  64. 64.
    Dimitrov D, Schreve K, Beer N. Advances in three dimensional printing — state of the art and future perspectives. Rapid Prototyping Journal, 2006, 12(3): 136–147CrossRefGoogle Scholar
  65. 65.
    Lee M, Dunn J C, Wu B M. Scaffold fabrication by indirect threedimensional printing. Biomaterials, 2005, 26(20): 4281–4289CrossRefGoogle Scholar
  66. 66.
    Butscher A, Bohner M, Roth C, Ernstberger A, Heuberger R, Doebelin N, von Rohr P R, Müller R. Printability of calcium phosphate powders for three-dimensional printing of tissue engineering scaffolds. Acta Biomaterialia, 2012, 8(1): 373–385CrossRefGoogle Scholar
  67. 67.
    Seitz H, Rieder W, Irsen S, Leukers B, Tille C. Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 2005, 74(2): 782–788CrossRefGoogle Scholar
  68. 68.
    Sachs E, Cima M, Cornie J. Three-dimensional printing: rapid tooling and prototypes directly form a CAD model. CIRP Annals-Manufacturing Technology, 1990, 39(1): 201–204CrossRefGoogle Scholar
  69. 69.
    Bak D. Rapid prototyping or rapid production? 3D printing processes move industry towards the latter. Assembly Automation, 2003, 23(4): 340–345MathSciNetCrossRefGoogle Scholar
  70. 70.
    Mueller B, Kochan D. Laminated object manufacturing for rapid tooling and patternmaking in foundry industry. Computers in Industry, 1999, 39(1): 47–53CrossRefGoogle Scholar
  71. 71.
    Prechtl M, Otto A, Geiger M. Rapid tooling by laminated object manufacturing of metal foil. Advanced Materials Research, 2005, 6–8: 303–312CrossRefGoogle Scholar
  72. 72.
    Park J, Tari M J, Hahn H T. Characterization of the laminated object manufacturing (LOM) process. Rapid Prototyping Journal, 2000, 6(1): 36–50CrossRefGoogle Scholar
  73. 73.
    Weisensel L, Travitzky N, Sieber H, Greil P. Laminated object manufacturing (LOM) of SiSiC composites. Advanced Engineering Materials, 2004, 6(11): 899–903CrossRefGoogle Scholar
  74. 74.
    Liao Y S, Li H C, Chiu Y Y. Study of laminated object manufacturing with separately applied heating and pressing. International Journal of Advanced Manufacturing Technology, 2006, 27(7–8): 703–707CrossRefGoogle Scholar
  75. 75.
    Pham D T, Gault R S. A comparison of rapid prototyping technologies. International Journal of Machine Tools & Manufacture, 1998, 38(10–11): 1257–1287CrossRefGoogle Scholar
  76. 76.
    Griffith M L, Halloran J W. Freeform fabrication of ceramics via stereolithography. Journal of the American Ceramic Society, 1996, 79(10): 2601–2608CrossRefGoogle Scholar
  77. 77.
    Dufaud O, Corbel S. Stereolithography of PZT ceramic suspensions. Rapid Prototyping Journal, 2002, 8(2): 83–90CrossRefGoogle Scholar
  78. 78.
    Hinczewski C, Corbel S, Chartier T. Ceramic suspensions suitable for stereolithography. Journal of the European Ceramic Society, 1998, 18(6): 583–590CrossRefGoogle Scholar
  79. 79.
    Allahverdi M, Danforth S C, Jafari M, Safari A. Processing of advanced electroceramic components by fused deposition technique. Journal of the European Ceramic Society, 2001, 21(10–11): 1485–1490CrossRefGoogle Scholar
  80. 80.
    Rangarajan S, Qi G, Venkataraman N, Safari A, Danforth S C. Powder processing, rheology, and mechanical properties of feedstock for fused deposition of Si3N4 ceramics. Journal of the American Ceramic Society, 2000, 83(7): 1663–1669CrossRefGoogle Scholar
  81. 81.
    Agarwala M K, Weeren R, Bandyopadhyay A, Whalen P J, Safari A, Danforth S C. Fused deposition of ceramics and metals: an overview. In: Proceeding of Solid Freeform Fabrication Symposium. Austin, TX, 1996Google Scholar
  82. 82.
    Leu M C, Pattnaik S, Hilmas G E. Optimization of selective laser sintering process for fabrication of zirconium diboride parts. In: Proceeding of International Solid Freeform Fabrication Symposium. Austin, TX, 2010Google Scholar
  83. 83.
  84. 84.
    Guo N, Leu MC. Effect of different graphite materials on electrical conductivity and flexural strength of bipolar plates fabricated by selective laser sintering. In: Proceedings of the Solid Freeform Fabrication Symposium. Austin, TX, 2010Google Scholar
  85. 85.
    Goodridge R D, Dalgarno K W, Wood D J. Indirect selective laser sintering of an apatite-mullite glass-ceramic for potential use in bone replacement applications. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine, 2006, 220(1): 57–68CrossRefGoogle Scholar
  86. 86.
    Sun W, Dcosta D J, Lin F, El-Raghy T. Freeform fabrication of Ti3SiC2 powder-based structures, part I — integrated fabrication process. Journal of Materials Processing Technology, 2002, 127(3): 343–351CrossRefGoogle Scholar
  87. 87.
    Nikzad M, Masood S H, Sbarski I, Groth A. Rheological properties of a particulate-filled polymeric composite through fused deposition process. Materials Science Forum, 2010, 654–656: 2471–2474CrossRefGoogle Scholar
  88. 88.
    Zhong W, Li F, Zhang Z, Song L, Li Z. Short fiber reinforced composites for fused deposition modeling. Materials Science and Engineering, 2001, A301: 125–130Google Scholar
  89. 89.
    Shofner M L, Lozano K, Rodriguez-Macias F J, Barrera E V. Nanofiber-reinforced polymers prepared by fused deposition modeling. Journal of Applied Polymer Science, 2003, 89: 3081–3090CrossRefGoogle Scholar
  90. 90.
    Suwanprateeb J, Sanngam R, Suvannapruk W, Panyathanmaporn T. Mechanical and in vitro performance of apatite-wollastonite glass ceramic reinforced hydroxyapatite composite fabricated by 3D-printing. Journal of Materials Science. Materials in Medicine, 2009, 20(6): 1281–1289CrossRefGoogle Scholar
  91. 91.
    Rambo C R, Travitzky N, Zimmermann K, Greil P. Synthesis of TiC/Ti-Cu composites by pressureless reactive infiltration of TiCu alloy into carbon performs fabricated by 3D-printing. Materials Letters, 2005, 59(8–9): 1028–1031CrossRefGoogle Scholar
  92. 92.
    Klosterman D, Chartoff R, Graves G, Osborne N, Priore B. Interfacial characteristics of composites fabricated by laminated object manufacturing. Compos Part A, 1998, 29(9–10): 1165–1174CrossRefGoogle Scholar
  93. 93.
    Klosterman D, Chartoff R, Agarwala M, Fiscus I, Murphy J, Cullen S, Yeazell M. Direct fabrication of polymer composite structures with curved LOM. In: Proceedings of the Solid Freeform Fabrication Symposium. Austin, TX, 1999: 401–409Google Scholar
  94. 94.
    Klosterman D A, Chartoff R P, Osborne N R, Graves G A, Lightman A, Han G, Bezeredi A, Rodrigues S. Curved layer LOM of ceramics and composites. In: Proceedings of the Solid Freeform Fabrication Symposium. Austin, TX, 1998: 671–680Google Scholar
  95. 95.
    Kumar S, Kruth J P. Composites by rapid prototyping technology. Materials & Design, 2010, 31(2): 850–856CrossRefGoogle Scholar
  96. 96.
    Wiria F E, Leong K F, Chua C K, Liu Y. Poly-epsiloncaprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering. Acta Biomaterialia, 2007, 3(1): 1–12CrossRefGoogle Scholar
  97. 97.
    Eosoly S, Lohfeld S, Brabazon D. Effect of hydroxyapatite on biodegradable scaffolds fabricated by SLS. Key Engineering Materials, 2009, 396–398: 659–662CrossRefGoogle Scholar
  98. 98.
    Leong C C, Lu L, Fuh J Y H, Wong Y S. In-situ formation of copper matrix composites by laser sintering. Materials Science and Engineering A, 2002, 338(1–2): 81–88CrossRefGoogle Scholar
  99. 99.
    Evans R S, Bourell D L, Beaman J J, Campbell M I. Rapid manufacturing of silicon carbide composites. In: Proceedings of Solid Freeform Fabrication Symposium. Austin, TX, 2004Google Scholar
  100. 100.
    Stevinson B Y, Bourell D L, Beaman J J. Over-infiltration mechanisms in selective laser sintered Si/SiC preforms. Rapid Prototyping Journal, 2008, 14(3): 149–154CrossRefGoogle Scholar
  101. 101.
    Bandyopadhyay A, Krishna B V, Xue W, Bose S. Application of laser engineered net shaping (LENS) to manufacture porous and functionally graded structures for load bearing implants. Journal of Materials Science. Materials in Medicine, 2009, 20(S1 Suppl 1): 29–34CrossRefGoogle Scholar
  102. 102.
    Vamsi Krishna B, Xue W, Bose S, Bandyopadhyay A. Functionally graded Co-Cr-Mo coating on Ti-6Al-4V alloy structures. Acta Biomaterialia, 2008, 4(3): 697–706CrossRefGoogle Scholar
  103. 103.
    Liu W, DuPont J N. Fabrication of functionally graded TiC/Ti composites by laser engineered net shaping. Scripta Materialia, 2003, 48(9): 1337–1342CrossRefGoogle Scholar
  104. 104.
    Domack M S, Baughman J M. Development of nickel-titanium graded composition components. Rapid Prototyping Journal, 2005, 11(1): 41–51CrossRefGoogle Scholar
  105. 105.
    Wang F, Mei J, Wu X. Compositionally graded Ti6Al4V + TiC made by direct laser fabrication using powder and wire. Materials & Design, 2007, 28(7): 2040–2046CrossRefGoogle Scholar
  106. 106.
    Leu M C, Tang L, Deuser B, Landers R G, Hilmas G E, Zhang S, Watts J. Freeze-form extrusion fabrication of composite structures. In: Proceedings of the Solid Freeform Fabrication Symposium. Austin, TX, 2011, 111–124Google Scholar
  107. 107.
    Caulfield B, McHugh P E, Lohfeld S. Dependence of mechanical properties of polyamide components on build parameters in the SLS process. Journal of Materials Processing Technology, 2007, 182(1–3): 477–488CrossRefGoogle Scholar
  108. 108.
    Zarringhalam H, Majewski C, Hopkinson N. Degree of particle melt in Nylon-12 selective laser-sintered parts. Rapid Prototyping Journal, 2009, 15(2): 126–132CrossRefGoogle Scholar
  109. 109.
    Ahn S H, Montero M, Odell D, Roundy S, Wright P K. Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyping Journal, 2002, 8(4): 248–257CrossRefGoogle Scholar
  110. 110.
    Lam C X F, Mo X M, Teoh S H, Hutmacher D W. Scaffold development using 3D printing with a starch-based polymer. Materials Science and Engineering C, 2002, 20(1–2): 49–56CrossRefGoogle Scholar
  111. 111.
    Schmidt M, Pohle D, Rechtenwald T. Selective laser sintering of PEEK. Annals- Manufacturing Technology, 2007, 56(1): 205–208CrossRefGoogle Scholar
  112. 112.
    Leong K F, Wiria F E, Chua C K, Li S H. Characterization of a poly-ɛ-caprolactone polymeric drug delivery device built by selective laser sintering. Bio-Medical Materials and Engineering, 2007, 17(3): 147–157Google Scholar
  113. 113.
    Ramanath H S, Chua C K, Leong K F, Shah K D. Melt flow behaviour of poly-ɛ-caprolactone in fused deposition modelling. Journal of Materials Science. Materials in Medicine, 2008, 19(7): 2541–2550CrossRefGoogle Scholar
  114. 114.
    Ramanath H S, Chandrasekaran M, Chua C K, Leong K F, Shah K D. Modeling of extrusion behavior of biopolymer and composites in fused deposition modeling. Key Engineering Materials, 2007, 334–335: 1241–1244CrossRefGoogle Scholar
  115. 115.
    Cheah C M, Chua C K, Lee C W, Feng C, Totong K. Rapid prototyping and tooling techniques: a review of applications for rapid investment casting. International Journal of Advanced Manufacturing Technology, 2005, 25(3–4): 308–320CrossRefGoogle Scholar
  116. 116.
    Agarwala M, Bourell D, Beaman J, Marcus H, Barlow J. Direct selective laser sintering of metals. Rapid Prototyping Journal, 1995, 1(1): 26–36CrossRefGoogle Scholar
  117. 117.
    Agarwala M, Bourell D, Beaman J, Marcus H, Barlow J. Postprocessing of selective laser sintered metal parts. Rapid Prototyping Journal, 1995, 1(2): 36–44CrossRefGoogle Scholar
  118. 118.
    Allen S M, Sachs E M. Three-dimensional printing of metal parts for tooling and other applications. Metals and Materials, 2000, 6(6): 589–594CrossRefGoogle Scholar
  119. 119.
    Clarinval A M, Carrus R, Dormal T, Soyeur Q. Fabrication of stainless steel and ceramic parts with the Optoform process. Advanced Research inVirtual and Rapid Manufacturing. London: Taylor & Francis Group, 2007: 415–418Google Scholar
  120. 120.
    Xue L, Purcell C. Laser consolidation of net-shape shells for flextensional sonar projectors. In: Proceedings of ICALEO. Scottsdale, AZ, 2006Google Scholar
  121. 121.
    Strondl A, Palm M, Gnauk J, Frommeyer G. Microstructure and mechanical properties of nickel based superalloy IN718 produced by rapid prototyping with electron beam melting (EBM). Materials Science and Technology, 2011, 27(5): 876–883CrossRefGoogle Scholar
  122. 122.
    Mudge R P, Wald N R. Laser engineered net shaping advances additive manufacturing and repair. Welding Journal-New York, 2007, 86(1): 44–48Google Scholar
  123. 123.
    MTT Technologies Group. MTT selective laser melting. 2009Google Scholar
  124. 124.
  125. 125.
    Otubo J, Antunes A S. Characterization of 150 mm in diameter NiTi SMA ingot produced by electron beam melting. Materials Science Forum, 2010, 643: 55–59CrossRefGoogle Scholar
  126. 126.
    Sachs E, Cima M, Bredt J. CAD-casting: direct fabrication of ceramic shells and cores by three-dimensional printing. Manufacturing Review (USA), 1992, 5(2): 117–126Google Scholar
  127. 127.
    Rudraraju A, Deptowicz D, Das S. Strategies for fabricating nextgeneration multifunctional airfoil designs through LAMP. In: Proceedings of the International Solid Freeform Fabrication Symposium. Austin, TX, 2011Google Scholar
  128. 128.
    Yuan D, Kambly K, Shao P, Rudraraju A, Cilio P, Tomeckoa V, Torres C, Halloran J W, Das S. Experimental investigations on a photocurable ceramic material system for large area maskless photolymerization. In: Proceedings of the International Solid Freeform Fabrication Symposium. Austin, TX, 2009Google Scholar
  129. 129.
    Z Corporation. 3DP Consumables Catalog. 2010Google Scholar
  130. 130.
    Wilkes J, Hagedorn Y C, Meiners W, Wissenbach K. Additive manufacturing of ZrO2-Al2O3 ceramic components by selective laser melting. Rapid Prototyping Journal, 2013, 19(1): 51–57CrossRefGoogle Scholar
  131. 131.
    Balla V K, Bose S, Bandyopadhyay A. Processing of bulk alumina ceramics using laser engineered net shaping. International Journal of Applied Ceramic Technology, 2008, 5(3): 234–242CrossRefGoogle Scholar
  132. 132.
    Jackson T R, Liu H, Patrikalakis N M, Sachs E M, Cima M J. Modelling and designing functionally graded material components for fabrication with local composition control. Materials & Design, 1999, 20(2–3): 63–75CrossRefGoogle Scholar
  133. 133.
  134. 134.
    Concept Laser Gmb H. http://www.concept-laser.de/
  135. 135.
    Morris Technologies. http://www.morristech.com/
  136. 136.
  137. 137.
    Hedges M, Calder N. Near net shape rapid manufacture & repair by LENS. In: Cost Effective Manufacture via Net-shape Processing. Neuilly-sur-Seine, France, 2006, 13-1–4Google Scholar
  138. 138.
    Kelbassa I, Gasser A, Wissenbach K. Laser cladding as a repair technique for blisks out of titanium and nickel based alloys used in aero engines. In: Proceedings of the 1st Pacific International Conference on Application of Lasers and Optics. Melbourne, 2004Google Scholar
  139. 139.
    Xue L, Islam M U. Laser consolidation-a novel one-step manufacturing process for making net-shape functional components. In: Cost Effective Manufacturing via Net-Shape Processing. Neuilly-sur-Seine, France, 2006, 15-1–4Google Scholar
  140. 140.
    Richter K H, Orban S, Nowotny S. Laser cladding of the titanium alloy Ti6242 to restore damaged blades. In: Proceedings of the 23rd International Congress on Applications of Lasers and Electro-Optics. 2004Google Scholar
  141. 141.
    Qi H, Azer M, Singh P. Adaptive toolpath deposition method for laser net shape manufacturing and repair of turbine compressor airfoils. International Journal of Advanced Manufacturing Technology, 2010, 48(1–4): 121–131CrossRefGoogle Scholar
  142. 142.
    Liou F, Slattery K, Kinsella M, Newkirk J, Chou H N, Landers R. Applications of a hybrid manufacturing process for fabrication of metallic structures. Rapid Prototyping Journal, 2007, 13(4): 236–244CrossRefGoogle Scholar
  143. 143.
    Liou F W, Choi J, Landers R G, Janardhan V, Balakrishnan S N, Agarwal S. Research and development of a hybrid rapid manufacturing process. In: Proceedings of Solid Freeform Fabrication Symposium. Austin, TX, 2001Google Scholar
  144. 144.
    Ren L, Padathu A P, Ruan J, Sparks T, Liou F W. Three dimensional die repair using a hybrid manufacturing system. In: Proceedings of Solid Freeform Fabrication Symposium. Austin, TX, 2006Google Scholar
  145. 145.
    Bae C J. Integrally cored ceramic investment casting mold fabricated by ceramic stereolithography. Dissertation for Doctor Degree. University of Michigan, 2008Google Scholar
  146. 146.
    Wu H, Li D, Guo N. Fabrication of integral ceramic mold for investment casting of hollow turbine blade based on stereolithography. Rapid Prototyping Journal, 2009, 15(4): 232–237CrossRefGoogle Scholar
  147. 147.
    Wu H, Li D, Tang Y, Guo N, Sun B, Xu D. Rapid casting of hollow turbine blade using integral ceramic moulds. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2009, 223(6): 695–702CrossRefGoogle Scholar
  148. 148.
    Murr L E, Gaytan S M, Medina F, Martinez E, Martinez J L, Hernandez D H, Machado B I, Ramirez D A, Wicker R B. Characterization of Ti6Al4V open cellular foams fabricated by additive manufacturing using electron beam melting. Materials Science and Engineering A, 2010, 527(7–8): 1861–1868CrossRefGoogle Scholar
  149. 149.
    Gaytan S, Murr L, Medina F, Martinez E, Martinez L, Wicker R. Fabrication and characterization of reticulated, porous mesh arrays and foams for aerospace applications by additive manufacturing using electron beam melting. In: Proceedings of Minerals, Metals and Materials Society/AIME. Warrendale PA, 2010Google Scholar
  150. 150.
    Daneshmand S, Adelnia R, Aghanajafi S. Design and production of wind tunnel testing models with selective laser sintering technology using glass-reinforced Nylon. Materials Science Forum, 2006, 532–533: 653–656CrossRefGoogle Scholar
  151. 151.
  152. 152.
    Vilaro T, Abed S, Knapp W.Direct manufacturing of technical parts using selective laser melting: example of automotive application. In: Proceedings of 12th European Forum on Rapid Prototyping. 2008Google Scholar
  153. 153.
    Rosochowski A, Matuszak A. Rapid tooling: the state of the art. Journal of Materials Processing Technology, 2000, 106(1–3): 191–198CrossRefGoogle Scholar
  154. 154.
    Bassoli E, Gatto A, Iuliano L, Violante MG. 3D printing technique applied to rapid casting. Rapid Prototyping Journal, 2007, 13(3): 148–155CrossRefGoogle Scholar
  155. 155.
    Murr L E, Gaytan S M, Ceylan A, Martinez E, Martinez J L, Hernandez D H, Machado B I, Ramirez D A, Medina F, Collins S. Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting. Acta Materialia, 2010, 58(5): 1887–1894CrossRefGoogle Scholar
  156. 156.
    Ilardo R, Williams C B. Design and manufacture of a formula SAE intake system using fused deposition modeling and fiber-reinforced composite materials. Rapid Prototyping Journal, 2010, 16(3): 174–179CrossRefGoogle Scholar
  157. 157.
    Chang R, Emami K, Wu H, Sun W. Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model. Biofabrication, 2010, 2(4): 045004CrossRefGoogle Scholar
  158. 158.
    Adler Ortho Group. http://www.alaortho.com/indBigEng.htm. Accessed in 2010
  159. 159.
    Liu Q, Leu M C, Schmitt S M. Rapid prototyping in dentistry: technology and application. International Journal of Advanced Manufacturing Technology, 2006, 29(3–4): 317–335CrossRefGoogle Scholar
  160. 160.
    Vandenbroucke B, Kruth J P. Selective laser melting of biocompatible metal for rapid manufacturing of medical parts. Rapid Prototyping Journal, 2007, 13(4): 196–203CrossRefGoogle Scholar
  161. 161.
    Peltola S M, Melchels F P, Grijpma D W, Kellomäki M. A review of rapid prototyping techniques for tissue engineering purposes. Annals of Medicine, 2008, 40(4): 268–280CrossRefGoogle Scholar
  162. 162.
    Cooke M N, Fisher J P, Dean D, Rimnac C, Mikos A G. Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth. Journal of biomedical materials research. Part B, Applied biomaterials, 2003, 64(2): 65–69CrossRefGoogle Scholar
  163. 163.
    Kolan K C, Leu M C, Hilmas G E, Velez M. Selective laser sintering of 13–93 bioactive glass. In: Proceeding of the Solid Freeform Fabrication Symposium. Austin, TX, 2010Google Scholar
  164. 164.
    Liu Y F, Dong X T, Zhu F D. Overview of rapid prototyping for fabrication of bone tissue engineering scaffold. Advanced Materials Research, 2010, 102–104: 550–554CrossRefGoogle Scholar
  165. 165.
    Rezwan K, Chen Q Z, Blaker J J, Boccaccini A R. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, 2006, 27(18): 3413–3431CrossRefGoogle Scholar
  166. 166.
    Melchels F P W, Feijen J, Grijpma D W. A review on stereolithography and its applications in biomedical engineering. Biomaterials, 2010, 31(24): 6121–6130CrossRefGoogle Scholar
  167. 167.
    Chim H, Hutmacher DW, Chou A M, Oliveira A L, Reis R L, Lim T C, Schantz J T. A comparative analysis of scaffold material modifications for load-bearing applications in bone tissue engineering. International Journal of Oral and Maxillofacial Surgery, 2006, 35(10): 928–934CrossRefGoogle Scholar
  168. 168.
    Zein I, Hutmacher D W, Tan K C, Teoh S H. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials, 2002, 23(4): 1169–1185CrossRefGoogle Scholar
  169. 169.
    Lorrison J C, Goodridge R D, Dalgarno KW, Wood D J. Selective laser sintering of bioactive glass-ceramics. In: Proceedings of the Solid Freeform Fabrication Symposium. Austin, TX, 2002Google Scholar
  170. 170.
    Weinand C, Pomerantseva I, Neville C M, Gupta R, Weinberg E, Madisch I, Shapiro F, Abukawa H, Troulis M J, Vacanti J P. Hydrogel-β-TCP scaffolds and stem cells for tissue engineering bone. Bone, 2006, 38(4): 555–563CrossRefGoogle Scholar
  171. 171.
    Williams JM, Adewunmi A, Schek RM, Flanagan C L, Krebsbach P H, Feinberg S E, Hollister S J, Das S. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials, 2005, 26(23): 4817–4827CrossRefGoogle Scholar
  172. 172.
    Tan K H, Chua C K, Leong K F, Cheah CM, Cheang P, Abu Bakar M S, Cha S W. Scaffold development using selective laser sintering of polyetheretherketone-hydroxyapatite biocomposite blends. Biomaterials, 2003, 24(18): 3115–3123CrossRefGoogle Scholar
  173. 173.
    Arcaute K, Mann B K, Wicker R B. Stereolithography of three-dimensional bioactive poly(ethylene glycol) constructs with encapsulated cells. Annals of Biomedical Engineering, 2006, 34 (9): 1429–1441CrossRefGoogle Scholar
  174. 174.
    Dhariwala B, Hunt E, Boland T. Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography. Tissue Engineering, 2004, 10(9–10): 1316–1322Google Scholar
  175. 175.
    Dellinger J G, Eurell J A C, Stewart M, Jamison R D. Bone response to 3D periodic hydroxyapatite scaffolds with and without tailored microporosity to deliver bone morphogenetic protein 2. Journal of Biomedical Materials Research. Part A, 2006, 76(2): 366–376CrossRefGoogle Scholar
  176. 176.
    Shor L, Güçeri S, Chang R, Gordon J, Kang Q, Hartsock L, An Y, Sun W. Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering. Biofabrication, 2009, 1(1): 015003CrossRefGoogle Scholar
  177. 177.
    Kolan K C, Doiphode N D, Leu M C. Selective laser sintering and freeze extrusion fabrication of scaffolds for bone repair using 13–93 bioactive glass: a comparison. In: Proceedings of the Solid Freeform Fabrication Symposium. Austin, Texas, 2010Google Scholar
  178. 178.
    Kolan K C, Leu M C, Hilmas G E, Brown R F, Velez M. Fabrication of 13–93 bioactive glass scaffolds for bone tissue engineering using indirect selective laser sintering. Biofabrication, 2011, 3(2): 025004CrossRefGoogle Scholar
  179. 179.
    Lin L, Ju S, Cen L, Zhang H, Hu Q. Fabrication of porous β-TCP scaffolds by combination of rapid prototyping and freeze drying technology. IFMBE Proceedings, 2008, 19(4): 88–91CrossRefGoogle Scholar
  180. 180.
    Chen Z, Li D, Lu B, Tang Y, Sun M, Wang Z. Fabrication of artificial bioactive bone using rapid prototyping. Rapid Prototyping Journal, 2004, 10(5): 327–333CrossRefGoogle Scholar
  181. 181.
    Mironov V, Trusk T, Kasyanov V, Little S, Swaja R, Markwald R. Biofabrication: a 21st century manufacturing paradigm. Biofabrication, 2009, 1(2): 022001CrossRefGoogle Scholar
  182. 182.
    Cui X, Boland T. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials, 2009, 30(31): 6221–6227CrossRefGoogle Scholar
  183. 183.
    Boland T, Xu T, Damon B, Cui X. Application of inkjet printing to tissue engineering. Biotechnology Journal, 2006, 1(9): 910–917CrossRefGoogle Scholar
  184. 184.
    Wilson W C Jr, Boland T. Cell and organ printing 1: protein and cell printers. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 2003, 272(2): 491–496Google Scholar
  185. 185.
    Boland T, Mironov V, Gutowska A, Roth E A, Markwald R R. Cell and organ printing 2: fusion of cell aggregates in three-dimensional gels. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 2003, 272(2): 497–502Google Scholar
  186. 186.
    Mironov V, Boland T, Trusk T, Forgacs G, Markwald R R. Organ printing: computer-aided jet-based 3D tissue engineering. Trends in Biotechnology, 2003, 21(4): 157–161CrossRefGoogle Scholar
  187. 187.
    U.S. Department of Energy. Future fuel cells R&D. http://www.fossil.energy.gov/programs/powersystems/fuelcells/. Accessed in 2010
  188. 188.
    Chen S, Bourell D L, Wood K L. Fabrication of PEM fuel cell bipolar plates by indirect SLS. In: Proceedings of the Solid Freeform Fabrication Symposium. Austin, TX, 2004, 244–256Google Scholar
  189. 189.
    Chen S, Murphy J, Herlehy J, Bourell D L, Wood K L. Development of SLS fuel cell current collectors. Rapid Prototyping Journal, 2006, 12(5): 275–282CrossRefGoogle Scholar
  190. 190.
    Alayavalli K, Bourell D L. Fabrication of electrically conductive, fluid impermeable direct methanol fuel cell (DMFC) graphite bipolar plates by indirect selective laser sintering (SLS). In: Proceedings of the International Solid Freeform Fabrication Symposium. Austin, TX, 2008, 186–193Google Scholar
  191. 191.
    Alayavalli K, Bourell D L. Fabrication of modified graphite bipolar plates by indirect selective laser sintering (SLS) for direct methanol fuel cells. Rapid Prototyping Journal, 2010, 16(4): 268–274CrossRefGoogle Scholar
  192. 192.
    Guo N, Leu M C. Effect of different graphite materials on the electrical conductivity and flexural strength of bipolar plates fabricated using selective laser sintering. International Journal of Hydrogen Energy, 2012, 37(4): 3558–3566CrossRefGoogle Scholar
  193. 193.
    Bourell D L, Leu M C, Chakravarthy K, Guo N, Alayavalli K. Graphite-based indirect laser sintered fuel cell bipolar plates containing carbon fiber additions. CIRP Annals-Manufacturing Technology, 2011, 60(1): 275–278CrossRefGoogle Scholar
  194. 194.
    Guo N, Leu M C. Experimental study of polymer electrolyte membrane fuel cells using a graphite composite bipolar plate fabricated by selective laser sintering. In: Proceeding of the Solid Freeform Fabrication Symposium. Austin, TX, 2012Google Scholar
  195. 195.
    Guo N, Leu M C, Wu M. Bio-inspired design of bipolar plate flow fields for polymer electrolyte membrane fuel cells. In: Proceedings of the Solid Freeform Fabrication Symposium. Austin, TX, 2011Google Scholar
  196. 196.
    Wu M, Leu M C, Guo N. Simulation and testing of polymer electrolyte membrane fuel cell bipolar plates fabricated by selective laser sintering. In: Proceedings of ASME 2012 International Symposium on Flexible Automation. St. Louis, MO, 2012Google Scholar
  197. 197.
    Taghipour E, Leu M C, Guo N. Comparison of compression molding and selective laser sintering processes in the development of composite bipolar plates for proton exchange membrane fuel cells. In: Proceedings of the Solid Freeform Fabrication Symposium. Austin, TX, 2012Google Scholar
  198. 198.
    Bourell D L, Leu M C, Rosen D W. Roadmap for additive manufacturing: identifying the future of freeform processing. The University of Texas at Austin, Laboratory for Freeform Fabrication. Austin, TX, 2009, 7–10Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace EngineeringMissouri University of Science and TechnologyRollaUSA

Personalised recommendations