Advertisement

Frontiers of Mechanical Engineering

, Volume 6, Issue 1, pp 99–117 | Cite as

Research on applications of piezoelectric materials in smart structures

  • Jinhao QiuEmail author
  • Hongli Ji
Review Article
  • 376 Downloads

Abstract

Piezoelectric materials have become the most attractive functional materials for sensors and actuators in smart structures because they can directly convert mechanical energy to electrical energy and vise versa. They have excellent electromechanical coupling characteristics and excellent frequency response. In this article, some research activities on the applications of piezoelectric materials in smart structures, including semi-active vibration control based on synchronized switch damping using negative capacitance, energy harvesting using new electronic interfaces, structural health monitoring based on a new type of piezoelectric fibers with metal core, and active hysteresis control based on new modified Prandtl-Ishlinskii model at the Aeronautical Science Key Laboratory for Smart Materials and Structures, Nanjing University of Aeronautics and Astronautics are introduced.

Keywords

piezoelectric materials vibration control energy harvesting structural health monitoring piezoelectric hysteresis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 1.
    Ji H L, Qiu J H, Zhu K J, Matsuta K. An improved system of active noise isolation using a self-sensing actuator and neural network. Journal of Vibration and Control, 2009, 15(12): 1853–1873CrossRefGoogle Scholar
  2. 2.
    Guyomar D, Richard T, Richard C. Sound wave transmission reduction through a plate using piezoelectric synchronized switch damping technique. Journal of Intelligent Material Systems and Structures, 2007, 19(7): 791–803CrossRefGoogle Scholar
  3. 3.
    Lallart M, Harari S, Petit L, Guyomar D, Richard T, Richard C, Gaudiller L. Blind switch damping (BSD): A self-adaptive semiactive damping technique. Journal of Sound and Vibration, 2009, 328(1–2): 29–41CrossRefGoogle Scholar
  4. 4.
    Badel A, Sebald G, Guyomar D, Lallart M, Lefeuvre E, Richard C, Qiu J H. Piezoelectric vibration control by synchronized switching on adaptive voltage sources: Towards wideband semi-active damping. Journal of the Acoustical Society of America, 2006, 119(5): 2815–2825CrossRefGoogle Scholar
  5. 5.
    Faiz A, Guyomar D, Petit L, Buttay C. Wave transmission reduction by a piezoelectric semi-passive technique. Sensors and Actuators, 2006, 128(2): 230–237CrossRefGoogle Scholar
  6. 6.
    Onoda J, Makihara K, Minesugi K. Energy-recycling semi-Active method for vibration suppression with piezoelectric transducers. AIAA Journal, 2003, 41(4): 711–719CrossRefGoogle Scholar
  7. 7.
    Makihara K, Onoda J, Minesugi K. Behavior of piezoelectric transducer on energy-recycling semi-active vibration suppression. AIAA Journal, 2006, 44(2): 411–413CrossRefGoogle Scholar
  8. 8.
    Lefeuvre E, Guyomar D, Petit L, Richard C, Badel A. Semi-passive structural damping by synchronized switching on voltage sources. Journal of Intelligent Material Systems and Structures, 2006, 17(8–9): 653–660CrossRefGoogle Scholar
  9. 9.
    Ji H L, Qiu J H, Badel A, Zhu K J. Semi-active vibration control of a composite beam using adaptive SSDV approach. Journal of Intelligent Material Systems and Structures, 2009, 20(3): 401–412Google Scholar
  10. 10.
    Ji H L, Qiu J H, Badel A, Chen Y S, Zhu K J. Semi-active vibration control of a composite beam by adaptive synchronized switching on voltage sources based on LMS algorithm. Journal of Intelligent Material Systems and Structures, 2009, 20(8): 939–947CrossRefGoogle Scholar
  11. 11.
    Behrens S, Fleming A J, Moheimani S O R. A broadband controller for shunt piezoelectric damping of structural vibration. Smart Materials and Structures, 2003, 12(1): 18–28CrossRefGoogle Scholar
  12. 12.
    Wu S Y, Calif A. U S Patent, 6,075,309Google Scholar
  13. 13.
    Lin Q R, Ermanni P. Semi-active damping of a clamped plate using PZT. International Journal of Solids and Structures, 2004, 41(7): 1741–1752zbMATHCrossRefGoogle Scholar
  14. 14.
    Park C H, Park H C. Multiple-mode structural vibration control using negative capacitive shunt damping. KSME International Journal, 2003, 17(11): 1650–1658Google Scholar
  15. 15.
    Ji H L, Qiu J H, Chen J, Inman D. Application of a negative capacitance circuit in synchronized switch damping techniques for vibration suppression. Journal of Vibration and Acoustics, Transaction of the ASME, 2010 (in print)Google Scholar
  16. 16.
    Ji H L, Qiu J H, Badel A, Chen Y S, Zhu K J. Multimodal vibration control using a synchronized switch based on a displacement switching threshold. Smart Materials and Structures, 2009, 18(3): 035016 (9pp)Google Scholar
  17. 17.
    Ji H L, Qiu J H, Zhu K J, Badel A. Two-mode vibration control using nonlinear synchronized switching damping based on the maximization of converted energy. Journal of Sound and Vibration, 2010, 329(14): 2751–2767CrossRefGoogle Scholar
  18. 18.
    Corr L R, Clark W W. A novel semi-active multi-modal vibration control law for a piezoceramic actuator. Journal of Vibration and Acoustics. Transactions of the ASME, 2003, 125(2): 214–222CrossRefGoogle Scholar
  19. 19.
    Guyomar D, Badel A. Non-linear semi-passive multi-modal vibration damping: an efficient probabilistic approach. Journal of Sound and Vibration, 2006, 294(1–2): 249–268CrossRefGoogle Scholar
  20. 20.
    Guyomar D, Richard C, Mohammadi S. Semi-passive random vibration control based on statistics. Journal of Sound and Vibration, 2007, 307(3–5): 818–833CrossRefGoogle Scholar
  21. 21.
    Guyomar D, Badel A, Lefeuvre E, Richard C. Toward energy harvesting using active materials and conversion improvement by nonlinear processing. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52(4): 584–595CrossRefGoogle Scholar
  22. 22.
    Qiu J H, Jiang H, Ji H L, Zhu K J. A comparison between four piezoelectric energy harvesting circuits. Frontiers of Mechanical Engineering in China, 2009, 4(2): 153–159CrossRefGoogle Scholar
  23. 23.
    Ji H L, Ma Y, Jiang H, Shen H, Qiu J H, Zhu K J. Modelling, simulation and optimization of high efficiency piezoelectric energy harvester. Optics and Precision Engineering, 2008, 16(12): 2346–2351Google Scholar
  24. 24.
    Lefeuvre E, Badel A, Richard C, Petit L, Guyomar D. A comparison between several vibration-powered piezoelectric generators for standalone systems. Sensors and Actuators. A, Physical, 2006, 126(2): 405–416CrossRefGoogle Scholar
  25. 25.
    Taylor G W, Burns J R, Kammann S M, Powers W B, Welsh T R. The energy harvesting eel: A small subsurface ocean/river power generator. IEEE Journal of Oceanic Engineering, 2001, 26(4): 539–547CrossRefGoogle Scholar
  26. 26.
    Lallart M, Garbuio L, Petit L, Richard C, Guyomar D. Double synchronized switch harvesting (DSSH): a new energy harvesting scheme for efficient energy extraction. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2008, 55(10): 2119–2130CrossRefGoogle Scholar
  27. 27.
    Shen H, Qiu J H, Ji H L, Zhu K J, Marco B. Enhanced synchronized switch harvesting: a new energy harvesting scheme for efficient energy extraction. Smart Materials and Structures, 2010, 19(11): 115017 (14pp)CrossRefGoogle Scholar
  28. 28.
    Badel A, Qiu J H, Nakano T. Self-sensing force control of a piezoelectric actuator. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2008, 55(12): 2571–2581CrossRefGoogle Scholar
  29. 29.
    Jiang H, Ji H L, Qiu J H, Chen Y S. A modified prandtl-ishlinskii model for modeling asymmetric hysteresis of piezoelectric actuators. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57(5): 1200–1210CrossRefGoogle Scholar
  30. 30.
    Chen Y S, Qiu J H, Ji H L, Zhu K J. Tracking control of piezoelectric actuator system using inverse hysteresis model. International Journal of Applied Electromagnetics and Mechanics, 2010, 33(3–4): 1555–1564Google Scholar
  31. 31.
    Brokate M, Kenmochi N. Hysteresis and Phase Transitions. Berlin, Germany: Springer-Verlag, 1996zbMATHGoogle Scholar
  32. 32.
    Narendra K S, Annaswamy A M. Stable Adaptive Systems. Englewood Cliffs, NJ: Prentice-Hall, 1989Google Scholar
  33. 33.
    Qiu J H, Yamada N, Tani J, Takahashi H. Fabrication of piezoelectric fibers with metal core. In: Proc. SPIE Conference on Smart Structures and Materials, San Diego, CA, USA: SPIE, 2003, 475–483Google Scholar
  34. 34.
    Sato H, Sekiya T, Nagamine M. Design of the metal-core piezoelectric fiber. In: Proc. SPIE Conference on Smart Structures and Materials. Bellingham, WA: SPIE, 2004, 97–103Google Scholar
  35. 35.
    Liu J, Qiu J H, Chang WJ, Ji H L, Zhu K J. Metal-core piezoelectric ceramic fiber rosettes for acousto-ultrasonic source localization in plate structures. International Journal of Applied Electromagnetics and Mechanics, 2010, 33(3–4): 865–873Google Scholar
  36. 36.
    Lemistre M, Balageas D. Structural health monitoring system based on diffracted Lamb wave analysis by multiresolution processing. Smart Materials and Structures, 2001, 10(3): 504–511CrossRefGoogle Scholar
  37. 37.
    Thursby G, Sorazu B, Betz D, Culshaw B. Novel methods of Lamb wave detection for material damage detection and location. In: Proceedings of the SPIE Smart Structures and Materials Conferences, San Diego, 2005, 5768: 313–322Google Scholar
  38. 38.
    Timoshenko S P, Goodier J N. Theory of Elasticity. Mc-Graw Hill, 1987Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Aeronautic Science Key Laboratory for Smart Materials and Structures, College of Aerospace EngineeringNanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations