Frontiers of Mechanical Engineering in China

, Volume 4, Issue 3, pp 242–251 | Cite as

Semi-active vibration control using piezoelectric actuators in smart structures

Review Article

Abstract

The piezoelectric materials, as the most widely used functional materials in smart structures, have many outstanding advantages for sensors and actuators, especially in vibration control, because of their excellent mechanical-electrical coupling characteristics and frequency response characteristics. Semi-active vibration control based on state switching and pulse switching has been receiving much attention over the past decade because of several advantages. Compared with standard passive piezoelectric damping, these new semi-passive techniques offer higher robustness. Compared with active damping systems, their implementation does not require any sophisticated signal processing systems or any bulky power amplifier. In this review article, the principles of the semi-active control methods based on switched shunt circuit, including state-switched method, synchronized switch damping techniques, and active control theorybased switching techniques, and their recent developments are introduced. Moreover, the future directions of research in semi-active control are also summarized.

Keywords

smart structure semi-active method vibration control piezoelectric actuator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Simpson J, Schweiger J. Industrial approach to piezoelectric damping of large fighter aircraft components. In: Proc. SPIE Smart Structures and Materials: Industrial and Commercial Application of Smart Structures Technologies, 1998, 3326: 34–46Google Scholar
  2. 2.
    Wu S, Turner T L, Rizzi S A. pizoelectric shunt vibration damping of an F-15 panel under high-acoustic excitation. In: Proc. SPIE Smart Structures and Materials: Damping and Isolation, 2000, 3989: 276–287Google Scholar
  3. 3.
    Hopkins M A, Henderson D A, Moses R W, Ryall T, Zimcik D G, Spangler R L. Active vibration-suppression systems applied to twin-tail buffering. In: Proc. SPIE Smart Structures and Materials: Industrial and Commercial Application of Smart Structures Technologies, 1998, 3326: 27–33Google Scholar
  4. 4.
    Kim S, Han C, Yun C. Improvement of aeroelastic stability of hingeless helicopter rotor blade by passive piezoelectric damping. In: Proc. SPIE Smart Structures and Materials: Passive Damping and Isolation, 1999, 3672: 131–141Google Scholar
  5. 5.
    Zhang J M, Chang W, Varadan V K, Varadan V V. Passive underwater acoustic damping using shunted piezoelectric coatings. IOP Journal of Smart Materials and Structures, 2001, 10: 414–420CrossRefGoogle Scholar
  6. 6.
    Hagood N W, Chung W H, Flowtow A von. Modeling of piezoelectric actuator dynamics for active structural control. Journal of Intelligent Material Systems and Structures, 1990, 1: 327–353CrossRefGoogle Scholar
  7. 7.
    Hagood N W, Crawley E F. Experimental investigations of passive enhancement of damping space structures. Journal of Guidance, Control and Dynamics, 1991, 14(6): 1100–1109CrossRefGoogle Scholar
  8. 8.
    Hollkamp J J. Multimodal passive vibration suppression with piezoelectric materials and resonant shunts. Journal of Intelligent Material Systems and Structures, 1994, 5: 49–56CrossRefGoogle Scholar
  9. 9.
    Wang K W, Lai J S, Yu W K. Energy-based parametric control approach for structural vibration suppression via semi-active piezoelectric networks. Transaction of ASME, Journal Vibration and Acoustics, 1996, 115: 505–509CrossRefGoogle Scholar
  10. 10.
    Davis C L, Lesieutre G A, Dosch J. Tunable electrically shunted piezoceramic vibration absorber. In: Proceedings of SPIE, Smart Structures and Materials: Passive Damping and Isolation, San Diego, CA, 1997: 51–59Google Scholar
  11. 11.
    Davis C L, Lesieutre G A. An actively tuned solid-state piezoelectric vibration absorber. In: Proceedings of SPIE, Smart Structures and Materials. 1998, 3327: 169–182Google Scholar
  12. 12.
    Clark W W. Semi-active vibration control with piezoelectric materials as variable stiffness actuators. In: Proceedings 1000 AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, Part 4, 1999, 2623–2629Google Scholar
  13. 13.
    Richard C, Guyomar D, Audigier D, Ching G. Semi-passive damping using continuous switching of a piezoelectric device. In: Proceedings of the SPIE Smart Structures and Materials Conference: Passive Damping and Isolation, San Diego, 1998, 3672: 104–111Google Scholar
  14. 14.
    Richard C, Guyomar D, Audigier D, Bassaler H. Enhanced semi passive damping using continuous switching of a piezoelectric device on an inductor. In: Proceedings of SPIE International Symposium on Smart Structures and Materials: Damping and Isolation, 2000, 3989: 288–299Google Scholar
  15. 15.
    Onoda J, Makihara K, Minesugi K. Energy-recycling semi-active method for vibration suppression with piezoelectric transducers. AIAA Journal, 2003, 41(4): 711–719CrossRefGoogle Scholar
  16. 16.
    Makihara K, Onoda J, Minesugi K. Low-Energy-Consumption hybrid vibration suppression based on an energy-recycling approach. AIAA Journal, 2005, 43(8): 1706–1715CrossRefGoogle Scholar
  17. 17.
    Cunefare K A. State-switched absorber for vibration control of point-excited beams. Journal of Intelligent Material Systems and Structures, 2002, 13: 97–105CrossRefGoogle Scholar
  18. 18.
    Clark W. Vibration control with state-switched piezoelectric materials. Journal of intelligent material systems and structures, 2000, 11(4): 263–271Google Scholar
  19. 19.
    Corr L R, Clark W. Energy dissipation analysis of piezoceramic semi-active vibration control. Journal of intelligent material systems and structures, 2001, 12(11): 729–736CrossRefGoogle Scholar
  20. 20.
    Badel A, Sebald G, Guyomar D, Lallart M, Lefeuvre E, Richard C, Qiu J. Piezoelectric vibration control by synchronized switching on adaptive voltage sources: Towards wideband semi-active damping. Journal of Acoustics Society American, 2006, 119(5): 2815–2825CrossRefGoogle Scholar
  21. 21.
    Guyomar D, Richard C, Petit L. Non-linear system for vibration damping. 142th Meeting of Acoustical Society of America, Fort Lauderdale, USA, 2001Google Scholar
  22. 22.
    Petit L, Lefeuvre E, Richard C, Guyomar D. A broadband semi passive piezoelectric technique for structural damping. In: Proceedings of SPIE International Symposium on Smart Structures and Materials: Damping and Isolation, San Diego, CA, USA, 2004Google Scholar
  23. 23.
    Lefeuvre E, Guyomar D, Petit L, Richard C, Badel A. Semi-passive structural damping by synchronized switching on voltage sources. Journal of Intelligent Material Systems and Structures, 2006, 17(8/9): 653–660CrossRefGoogle Scholar
  24. 24.
    Faiz A, Guyomar L, Petit L, Buttay C. Wave transmission reduction by a piezoelectric semi-passive technique. Sensors and actuators, 2006, 128: 230–237CrossRefGoogle Scholar
  25. 25.
    Ji H L, Qiu J H, Badel A, Zhu K J. Semi-active vibration control of a composite beam using an adaptive SSDV approach. Journal of Intelligent Material Systems and Structures, 2009, 20(3): 401–412Google Scholar
  26. 26.
    Ji H L, Qiu J H, Badel A, Chen Y S, Zhu K J. Semi-active vibration control of a composite beam by adaptive synchronized switching on voltage sources based on LMS algorithm. Journal of Intelligent Material Systems and Structures, 2009, doi: 10.1177/1045389X08099967Google Scholar
  27. 27.
    Makihara K, Onoda J, Minesugi K. A self-sensing method for switching vibration suppression with a piezoelectric actuator. Smart Materials and Structures, 2007, 16(2): 455–461CrossRefGoogle Scholar
  28. 28.
    Makihara K, Onoda J, Minesugi K. Using tuned electrical resonance to enhance bang-bang vibration control. AIAA Journal, 2007, 45(2): 497–504CrossRefGoogle Scholar
  29. 29.
    Makihara K, Onoda J, Minesugi K. Novel approach to self-sensing actuation for semi-active vibration suppression. AIAA Journal, 2006, 44(7): 1445–1453CrossRefGoogle Scholar
  30. 30.
    Makihara K, Onoda J, Minesugi K. Behavior of piezoelectric transducer on energy-recycling semi-active vibration suppression. AIAA Journal, 2006, 44(2): 411–413CrossRefGoogle Scholar
  31. 31.
    Makihara K, Onoda J, Minesugi K. Comprehensive assessment of semi-active vibration suppression including energy analysis. Journal of Vibration and Acoustics, 2007, 129: 84–93CrossRefGoogle Scholar
  32. 32.
    Corr L R, Clark W W. A novel semi-active multi-modal vibration control law for a piezoceramic actuator. Transactions of the ASME, 2003, 125: 214–222Google Scholar
  33. 33.
    Ji H L, Qiu J H, Zhao Y C, Zhu K J. A study on semi-active vibration control using piezoelectric elements. Journal of Vibration Engineering (in press) (in Chinese)Google Scholar
  34. 34.
    Guyomar D, Badel A. Non-linear semi-passive multi-modal vibration damping: An efficient probabilistic approach. Journal of Sound and Vibration, 2006, 294: 249–68CrossRefGoogle Scholar
  35. 35.
    Guyomar D, Richard C, Mohammadi S. Semi-passive random vibration control based on statistics. Journal of Sound and Vibration, 2007, 30(7): 818–833CrossRefGoogle Scholar
  36. 36.
    Ji H L, Qiu J H, Zhu K J, Chen Y S, Badel A. Multi-modal vibration control using a synchronized switch based on a displacement switching threshold. Smart Materials and Structures (in press)Google Scholar
  37. 37.
    Niederberger D, Morari M. An autonomous shunt circuit for vibration damping. Smart Material and Structure, 2006, 15: 359–364CrossRefGoogle Scholar
  38. 38.
    Lallart M, Lefeuvre E, Richard C, Guyomar D. Self-powered circuit for broadband, multimodal piezoelectric vibration control. Sensors and Actuators A, 2007, 143: 377–382CrossRefGoogle Scholar
  39. 39.
    Richard C, Guyomar D, Lefeuvre E. Self-powered Electronic Breaker with Automatic Switching by Detecting Maxima or Minima of Potential Difference Between its Power Electrodes Patent # PCT/FR2005/003000, publication number: WO/2007/063194, 2007Google Scholar
  40. 40.
    Yabu T, Onoda J. Non-power-supply semi-active vibration suppression with piezoelectric actuator. In: Proceedings of the JSASS/JSME Structures Conference 2005, 47: 48–50Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  1. 1.Aeronautic Science Key Laboratory for Smart Materials and Structures College of Aerospace EngineeringNanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations