Advertisement

Non-leaving-face property for marked surfaces

  • Thomas Brüstle
  • Jie ZhangEmail author
Research Article
  • 1 Downloads

Abstract

We consider the polytope arising from a marked surface by flips of triangulations. D. D. Sleator, R. E. Tarjan, and W. P. Thurston [J. Amer. Math. Soc., 1988, 1(3): 647–681] studied the diameter of the associahedron, which is the polytope arising from a marked disc by flips of triangulations. They showed that every shortest path between two vertices in a face does not leave that face. We give a new method, which is different from the one used by V. Disarlo and H. Parlier [arXiv: 1411.4285] to establish the same non-leaving-face property for all unpunctured marked surfaces.

Keywords

Marked surface non-leaving-face property exchange graph 

MSC

13F60 13E10 16G20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors would like to thank Lionel Pournin for pointing out the work of Disarlo and Parlier [8] to them. This work was supported in part by the National Natural Science Foundation of China (Grant No. 11401022).

References

  1. 1.
    Brüstle T, Qiu Y. Tagged mapping class groups I: Auslander-Reiten translation. Math Z, 2015, 279(3): 1103–1120MathSciNetzbMATHGoogle Scholar
  2. 2.
    Brüstle T, Yang D. Ordered exchange graphs. In: Benson D J, Krause H, Skowroński A, eds. Advances in Representation Theory of Algebras. EMS Ser Congr Rep. Zürich: Eur Math Soc, 2013, 135–193Google Scholar
  3. 3.
    Brüstle T, Zhang J. On the cluster category of a marked surface without punctures. Algebra Number Theory, 2011, 5(4): 529–566MathSciNetzbMATHGoogle Scholar
  4. 4.
    Brustle T, Zhang J. A module-theoretic interpretation of Schiffler’s expansion formula. Comm Algebra, 2013, 41(1): 260–283MathSciNetzbMATHGoogle Scholar
  5. 5.
    Buan A B, Marsh R, Reineke M, Reiten I, Todorov G. Tilting theory and cluster combinatorics. Adv Math, 2006, 204(2): 572–618MathSciNetzbMATHGoogle Scholar
  6. 6.
    Ceballos C, Pilaud V. The diameter of type D associahedra and the non-leaving-face property. European J Combin, 2016, 51: 109–124MathSciNetzbMATHGoogle Scholar
  7. 7.
    Chapoton F, Fomin S, Zelevinsky A. Polytopal realizations of generalized associahedra. Canad Math Bull, 2002, 45(4): 537–566MathSciNetzbMATHGoogle Scholar
  8. 8.
    Disarlo V, Parlier H. The geometry of flip graphs and mapping class groups. arXiv: 1411.4285Google Scholar
  9. 9.
    Fomin S, Shapiro M, Thurston D. Cluster algebras and triangulated surfaces. I. Cluster complexes. Acta Math, 2008, 201(1): 83–146MathSciNetzbMATHGoogle Scholar
  10. 10.
    Fomin S, Zelevinsky A. Cluster algebras. I. Foundations. J Amer Math Soc, 2002, 15(2): 497–529MathSciNetzbMATHGoogle Scholar
  11. 11.
    Fomin S, Zelevinsky A. Cluster algebras. II. Finite type classification. Invent Math, 2003, 154(1): 63–121MathSciNetzbMATHGoogle Scholar
  12. 12.
    Hohlweg C, Lange C E M C, Thomas H. Permutahedra and generalized associahedra. Adv Math, 2011, 226(1): 608–640MathSciNetzbMATHGoogle Scholar
  13. 13.
    Labardini-Fragoso D. Quivers with potentials associated to triangulated surfaces. Proc Lond Math Soc (3), 2009, 98(3): 797–839MathSciNetzbMATHGoogle Scholar
  14. 14.
    Parlier H, Pournin L. Once punctured disks, non-convex polygons, and pointihedra. arXiv: 1602.04576Google Scholar
  15. 15.
    Parlier H, Pournin L. Flip-graph moduli spaces of filling surfaces. J Eur Math Soc (JEMS), 2017, 19(9): 2697–2737MathSciNetzbMATHGoogle Scholar
  16. 16.
    Parlier H, Pournin L. Modular flip-graphs of one-holed surfaces. European J Combin, 2018, 67: 158–173MathSciNetzbMATHGoogle Scholar
  17. 17.
    Pournin L. The diameter of associahedra. Adv Math, 2014, 259: 13–42MathSciNetzbMATHGoogle Scholar
  18. 18.
    Reading N. Cambrian lattices. Adv Math, 2006, 205(2): 313–353MathSciNetzbMATHGoogle Scholar
  19. 19.
    Sleator D D, Tarjan R E, Thurston W P. Rotation distance, triangulations, and hyperbolic geometry. J Amer Math Soc, 1988, 1(3): 647–681MathSciNetzbMATHGoogle Scholar
  20. 20.
    Williams N. W-associahedra have the non-leaving-face property. European J Combin, 2017, 62: 272–285MathSciNetzbMATHGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Département de MathématiquesUniversité de SherbrookeSherbrookeCanada
  2. 2.School of Mathematics and StatisticsBeijing Institute of TechnologyBeijingChina

Personalised recommendations