Advertisement

Lie bialgebra structures on generalized loop Schrödinger-Virasoro algebras

  • Haibo Chen
  • Xiansheng Dai
  • Hengyun YangEmail author
Research Article
  • 4 Downloads

Abstract

We give a classification of Lie bialgebra structures on generalized loop Schrödinger-Virasoro algebras sv. Then we find out that not all Lie bialgebra structures on generalized loop Schrödinger-Virasoro algebras sv are triangular coboundary.

Keywords

Lie bialgebra Yang-Baxter equation generalized loop Schrödinger-Virasoro algebra 

MSC

17B05 17B37 17B62 17B68 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors would like to thank the referees for many helpful comments and suggestions. This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 11801369, 11771279, 11801363, 11431010) and the Natural Science Foundation of Shanghai (Grant No. 16ZR1415000).

References

  1. 1.
    Chen H, Fan G, Han J, Su Y. Structures of generalized loop Schrödinger-Virasoro algebras. Mediterr J Math, 2018, 15: 125CrossRefzbMATHGoogle Scholar
  2. 2.
    Chen H, Han J, Su Y, Xu Y. Loop Schrödinger-Virasoro Lie conformal algebra. Internat J Math, 2016, 6: 1650057CrossRefzbMATHGoogle Scholar
  3. 3.
    Drinfeld V G. Constant quasiclassical solutions of the Yang-Baxter quantum equation. Sov Math Dokl, 1983, 28: 667–671zbMATHGoogle Scholar
  4. 4.
    Drinfeld V G. Quantum groups. In: Proceedings of the International Congress of Mathematicians, 1986, Berkeley, California, USA, Vol 1. Providence: Amer Math Soc, 1987, 798–820Google Scholar
  5. 5.
    Etingof P, Kazhdan D. Quantization of Lie bialgebras I. Selecta Math (N S), 1996, 2: 1–41MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Fa H, Li J, Zheng Y. Lie bialgebra structures on the deformative Schrödinger-Virasoro algebras. J Math Phys, 2015, 56: 111706MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Han J, Li J, Su Y. Lie bialgebra structures on the Schrödinger-Virasoro Lie algebra. J Math Phys, 2009, 50: 083504MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Henkel M. Schrödinger invariance and strongly anisotropic critical systems. J Stat Phys, 1994, 75: 1023–1029CrossRefzbMATHGoogle Scholar
  9. 9.
    Li J, Su Y. Representations of the Schrödinger-Virasoro algebras. J Math Phys, 2008, 49: 053512MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Liu D, Pei Y, Zhu L. Lie bialgebra structures on the twisted Heisenberg-Virasoro algebra. J Algebra, 2012, 359: 35–48MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Ng S H, Taft E J. Classification of the Lie bialgebra structures on the Witt and Virasoro algebras. J Pure Appl Algebra, 2000, 151: 67–88MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Song G, Su Y. Lie bialgebras of generalized Witt type. Sci China Ser A, 2006, 49: 533–544MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Song G, Su Y. Dual Lie bialgebras of Witt and Virasoro types. Sci China Math, 2013, 43: 1093–1102Google Scholar
  14. 14.
    Taft E J. Witt and Virasoro algebras as Lie bialgebras. J Pure Appl Algebra, 1993, 87: 301–312MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Tan S, Zhang X. Automorphisms and Verma modules for generalized Schrödinger-Virasoro algebras. J Algebra, 2009, 322: 1379–1394MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Wang W, Li J, Xin B. Central extensions and derivations of generalized Schrödinger-Virasoro algebra. Algebra Colloq, 2012, 19: 735–744MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Weibel C A. An Introduction to Homological Algebra. Cambridge Stud Adv Math. Cambridge: Cambridge Univ Press, 1994Google Scholar
  18. 18.
    Wu H, Wang S, Yue X. Structures of generalized loop Virasoro algebras. Comm Algebra, 2014, 42: 1545–1558MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Wu H, Wang S. Yue X. Lie bialgebras of generalized loop Virasoro algebras. Chin Ann Math Ser B, 2015, 36(3): 437–446MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Wu Y, Song G, Su Y. Lie bialgebras of generalized Virasoro-like type. Acta Math Sin (Engl Ser), 2006, 22: 1915–1922MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Yang H, Su Y. Lie super-bialgebra structures on generalized super-virasoro algebras. Acta Math Sci Ser B Engl Ed, 2010, 30: 225–239MathSciNetzbMATHGoogle Scholar
  22. 22.
    Yue X, Su Y. Lie bialgebra structures on Lie algebras of generalized Weyl type. Comm Algebra, 2008, 36: 1537–1549MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Zhang X, Tan S. Unitary representations for the Schrödinger-Virasoro Lie algebra. J Algebra Appl, 2013, 12: 1250132MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Statistics and MathematicsShanghai Lixin University of Accounting and FinanceShanghaiChina
  2. 2.School of Mathematics SciencesGuizhou Normal UniversityGuiyangChina
  3. 3.Department of MathematicsShanghai Maritime UniversityShanghaiChina

Personalised recommendations