Frontiers of Mathematics in China

, Volume 14, Issue 2, pp 381–393 | Cite as

Tensor product weight modules of Schrödinger-Virasoro algebras

  • Dong Liu
  • Xiufu ZhangEmail author
Research Article


It is known that the Schrödinger-Virasoro algebras, including the original Schrödinger-Virasoro algebra and the twisted Schrödinger-Virasoro algebra, are playing important roles in mathematics and statistical physics. In this paper, we study the tensor products of weight modules over the Schrödinger-Virasoro algebras. The irreducibility criterion for the tensor products of highest weight modules with intermediate series modules over the Schrödinger-Virasoro algebra is obtained.


Harish-Chandra module tensor product highest weight module intermediate series module Schrödinger-Virasoro algebra 


17B10 17B65 17B68 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 11571145, 11871249) and the Natural Science Foundation of Zhejiang Province (No. LZ14A010001).


  1. 1.
    Alday L F, Gaiotto D, Tachikawa Y. Liouville Correlation Functions from Fourdimensional Gauge Theories. Lett Math Phys, 2010, 91(2): 167–197MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arbarello E, De Concini C, Kac V G, Procesi C. Moduli spaces of curves and representation theory. Comm Math Phys, 1988, 117: 1–36MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Arnal D, Pinczon G. On algebraically irreducible representations of the Lie algebra sl2. J Math Phys, 1974, 15: 350–359CrossRefzbMATHGoogle Scholar
  4. 4.
    Astashkevich A. On the structure of Verma modules over Virasoro and Neveu-Schwarz algebras. Comm Math Phys, 1997, 186(3): 531–562MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Billig Y. Representations of the twisted Heisenberg-Virasoro algebra at level zero. Canad Math Bull, 2003, 46(4): 529–537MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chen H, Guo X, Zhao K. Tensor product weight modules over the Virasoro algebra. J Lond Math Soc (2), 2013, 88: 829–834MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chen H, Hong Y, Su Y. A family of new simple modules over the Schrödinger-Virasoro algebra. J Pure Appl Algebra, 2018, 222: 900–913MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Feigin B, Fuchs D. Representations of the Virasoro algebra. In: Representation of Lie Groups and Related Topics. Adv Stud Contemp Math, Vol 7. New York: Gordon and Breach, 1990, 465–554Google Scholar
  9. 9.
    Gao S, Jiang C, Pei Y. Low dimensional cohomology groups of the Lie algebras W(a; b): Comm Algebra, 2011, 39(2): 397–423MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Guo X, Lu R, Zhao K. Irreducible Modules over the Virasoro Algebra. Doc Math, 2011, 16: 709–721MathSciNetzbMATHGoogle Scholar
  11. 11.
    Henkel M. Schrödinger invariance and strongly anisotropic critical systems. J Stat Phys, 1994, 75(5–6): 1023–1061CrossRefzbMATHGoogle Scholar
  12. 12.
    Li J, Su Y, Representations of the Schrödinger-Virasoro algebras. J Math Phys, 2008, 49: 053512MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Liu D. Classication of Harish-Chandra modules over some Lie algebras related to the Virasoro algebra. J Algebra, 2016, 447: 548–559MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Liu D, Jiang C. Harish-Chandra modules over the twisted Heisenberg-Virasoro algebra. J Math Phys, 2018, 49(1): 012901 (13pp)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Liu D, Pei Y. Deformations on the twisted Heisenberg-Virasoro algebra. Chin Ann Math Ser B, 2019, 40(1): 111–116MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Liu D, Pei Y, Zhu L. Lie bialgebra structures on the twisted Heisenberg-Virasoro algebra. J Algebra, 2012, 359: 35–48MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Liu D, Zhu L. The generalized Heisenberg-Virasoro algebra. Front Math China, 2009, 4(2): 297–310MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Lu R, Zhao K. Classication of irreducible weight modules over the twisted Heisenberg-Virasoro algebra. Commun Contemp Math, 2010, 12(2): 183–205MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Radobolja G. Subsingular vectors in Verma modules, and tensor product modules over the twisted Heisenberg-Virasoro algebra and W(2; 2) algebra. J Math Phys, 2013, 54(7): 071701 (24pp)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Radobolja G. Application of vertex algebras to the structure theory of certain representations over the Virasoro algebra. Algebr Represent Theory, 2014, 17(4): 1013–1034MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Roger C, Unterberger J. The Schrödinger-Virasoro Lie group and algebra: representation theory and cohomological study. Ann Henri Poincarè, 2006, 7: 1477–1529Google Scholar
  22. 22.
    Shen R, Jiang C. The derivation algebra and automorphism group of the twisted Heisenberg-Virasoro Algebra. Comm Algebra, 2006, 34: 2547–2558MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Tan S, Zhang X. Automorphisms and Verma modules for generalized Schrödinger-Virasoro algebras. J Algebra, 2009, 322(4): 1379–1394MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Zhang H. A class of representations over the Virasoro algebra. J Algebra, 1997, 190(1): 1–10MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Zhang X. Tensor product weight representations of the Neveu-Schwarz algebra. Comm Algebra, 2015, 43: 3754–3775MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsHuzhou UniversityHuzhouChina
  2. 2.School of Mathematics and StatisticsJiangsu Normal UniversityXuzhouChina

Personalised recommendations