Advertisement

Frontiers of Mathematics in China

, Volume 11, Issue 3, pp 577–592 | Cite as

Criteria for strong H-tensors

  • Yiju WangEmail author
  • Kaili Zhang
  • Hongchun Sun
Research Article

Abstract

H-tensor is a new developed concept which plays an important role in tensor analysis and computing. In this paper, we explore the properties of H-tensors and establish some new criteria for strong H-tensors. In particular, based on the principal subtensor, we provide a new necessary and sufficient condition of strong H-tensors, and based on a type of generalized diagonal product dominance, we establish some new criteria for identifying strong H-tensors. The results obtained in this paper extend the corresponding conclusions for strong H-matrices and improve the existing results for strong H-tensors.

Keywords

Strong H-tensor generalized diagonal dominance multilinear algebra weak irreducibility 

MSC

15A18 15A69 65F15 65F10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barmpoutis A, Vemuri B C, Howland D, Forder J R. Regularized positive-definite fourth order tensor field estimation from DW-MRI. Neuroimage, 2009, 45: 153–162CrossRefGoogle Scholar
  2. 2.
    Barmpoutis A, Vemuri B C, Shepherd T M, Forder J R. Tensor splines for interpolation and approximation of DT-MRI with applications to segmentation of isolated rat hippocampi. Transactions on Medical Imaging, 2007, 26: 1537–1546CrossRefGoogle Scholar
  3. 3.
    Basser P J, Jones D K. Diffusion-tensor MRI: theory, experimental design and data analysis—a technical review. NMR Biomed, 2002, 15: 456–467CrossRefGoogle Scholar
  4. 4.
    Basser P J, Mattiello J, Le Bihan D. Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B, 1994, 103: 247–254CrossRefGoogle Scholar
  5. 5.
    Brachat J, Comon P, Mourrain B, Tsigaridas E. Symmetric tensor decomposition. Linear Algebra Appl, 2010, 433: 1851–1872MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chang K, Pearson K, Zhang T. Perron-Frobenius theorem for nonnegative tensors. Commun Math Sci, 2008, 6: 507–520MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chen H, Qi L. Positive definiteness and semi-definiteness of even order symmetric Cauchy tensors. J Ind Manag Optim, 2015, 11: 1263–1274MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cichocki A, Zdunek R, Huy P, Amari S. Nonnegative Matrix and Tensor Factorizations. New York: John Wiley & Sons, Ltd, 2009CrossRefGoogle Scholar
  9. 9.
    De Lathauwer L, De Moor B, Vandewalle J. A multilinear singular value decomposition. SIAM J Matrix Anal Appl, 2010, 21: 1253–1278MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ding W, Qi L, Wei Y. M-tensors and nonsingular M-tensors. Linear Algebra Appl, 2013, 439: 3264–3278MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gandy S, Recht B, Yamada I. Tensor completion and low-n-rank tensor recovery via convex optimization. Inverse Problems, 2011, 27: 025010MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Horn R A, Johnson C R. Matrix Analysis. Cambridge: Cambridge University Press, 1985CrossRefzbMATHGoogle Scholar
  13. 13.
    Hu S, Huang Z, Qi L. Strictly nonnegative tensors and nonnegative tensor partition. Sci China Math, 2014, 57: 181–195MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kannan M R, Shaked-Monderer N, Berman A. Some properties of strong H-tensors and general H-tensors, Linear Algebra Appl, 2015, 476: 42–55MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kofidis E, Regalia P A. On the best rank-1 approximation of higher-order supersymmetric tensors, SIAM J Matrix Anal Appl, 2002, 23: 863–884MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kolda T G, Bader B W. Tensor decompositions and applications. SIAM Review, 2009, 51: 455–500MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Li C, Wang F, Zhao J, Zhu Y, Li Y. Criterions for the positive definiteness of real supersymmetric tensors. J Comput Appl Math, 2014, 255: 1–14MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Li Y, Liu Q, Qi L. Criteria for strong H-tensor. 2015, preprintGoogle Scholar
  19. 19.
    Nikias C L, Mendel J M. Signal processing with higher-order spectra. IEEE Signal Processing Magazine, 1993, 10: 10–37CrossRefGoogle Scholar
  20. 20.
    Qi L. Eigenvalues of a real supersymmetric tensor. J Symbolic Comput, 2005, 40: 1302–1324MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Qi L, Yu G, Wu E X. Higher order positive semidefinite diffusion tensor imaging. SIAM J Imaging Sci, 2010, 3: 416–433MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Qi L, Xu C, Xu Y. Nonnegative tensor factorization, completely positive tensors and a Hierarchically elimination algorithm. SIAM J Matrix Anal Appl, 2014, 35: 1227–1241MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Song Y, Qi L. Infinite and finite dimensional Hilbert tensors. Linear Algebra Appl, 2014, 451: 1–14MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Song Y, Qi L. Necessary and sufficient conditions for copositive tensors. Linear Multilinear Algebra, 2015, 63: 120–131MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Wang Y, Zhou G, Caccetta L. Nonsingular H-tensor and its criteria. J Ind Manag Optim, 2016, 12(4): 1173–1186MathSciNetCrossRefGoogle Scholar
  26. 26.
    Yang Y, Yang Q. Further results for Perron-Frobenius theorem for nonnegative tensors. SIAM J Matrix Anal Appl, 2010, 31: 2517–2530MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Zhang L, Qi L, Zhou G. M-tensors and some applications. SIAM J Matrix Anal Appl, 2014, 35: 437–452MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of Management ScienceQufu Normal UniversityRizhaoChina
  2. 2.School of ScienceLinyi UniversityLinyiChina

Personalised recommendations