Frontiers of Mathematics in China

, Volume 9, Issue 2, pp 417–423 | Cite as

Radius of locally convex subsets in Alexandrov spaces with curvature ⩾ 1 and radius > π/2

Research Article

Abstract

Let X be a complete Alexandrov space with curvature ⩾ 1 and radius > π/2. We prove that any connected, complete, and locally convex subset without boundary in X also has the radius > π/2.

Keywords

Alexandrov space convex subset radius 

MSC

53C20 53C35 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burago Y, Gromov M, Perel’man A D. Alexandrov spaces with curvature bounded below. Uspekhi Mat Nauk, 1992, 47: 3–51MathSciNetGoogle Scholar
  2. 2.
    Cheeger J, Ebin D G. Comparison Theorems in Riemannian Geometry. Amsterdam: North-Holland Publishing Company, 1975MATHGoogle Scholar
  3. 3.
    Grove K, Petersen P. A radius sphere theorem. Invent Math, 1993, 112: 577–583CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Grove K, Shiohama K. A generalized sphere theorem. Ann Math, 1977, 106: 201–211CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Perel’man G. Alexandrov’s spaces with curvature bounded from below II. PreprintGoogle Scholar
  6. 6.
    Perel’man G, Petrunin A. Quasigeodesics and gradient curves in Alexandrov spaces. 1994, PreprintGoogle Scholar
  7. 7.
    Wang Q. On the geometry of positively curved manifolds with large radius. Illinois J Math, 2004, 48(1): 89–96MATHMathSciNetGoogle Scholar
  8. 8.
    Xia C. Some applications of critical point theory of distance functions on Riemannian manifolds. Compos Math, 2002, 132: 49–55CrossRefMATHGoogle Scholar
  9. 9.
    Yamaguchi T. Collapsing 4-manifolds under a lower curvature bound. 2002, PreprintGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.School of Mathematical Sciences (and the Key Laboratory on Mathematics and Complex System)Beijing Normal UniversityBeijingChina
  2. 2.Center of Mathematical SciencesZhejiang UniversityHangzhouChina

Personalised recommendations