Frontiers of Mathematics in China

, Volume 9, Issue 1, pp 201–211 | Cite as

Existence of viscosity solutions for Hessian equations in exterior domains

Research Article

Abstract

The Perron method is used to establish the existence of viscosity solutions to the exterior Dirichlet problems for a class of Hessian type equations with prescribed behavior at infinity.

Keywords

Hessian equation viscosity solution exterior domain 

MSC

35J40 35J60 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bao J, Chen J, Guan B, Ji M. Liouville property and regularity of a Hessian quotient equation. Amer J Math, 2003, 125: 301–316CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Caffarelli L, Li Y Y. An extension to a theorem of Jörgens, Calabi and Pogorelov. Comm Pure Appl Math, 2003, 56: 549–583CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Caffarelli L, Nirenberg L, Spruck J. The Dirichlet problem for nonlinear second-order elliptic equations III. Functions of eigenvalues of the Hessians. Acta Math, 1985, 15: 261–301CrossRefMathSciNetGoogle Scholar
  4. 4.
    Caffarelli L, Nirenberg L, Spruck J. Nonlinear second order elliptic equations V. The Dirichlet problem for Weingarten hypersurfaces. Comm Pure Appl Math, 1988, 4: 41–70MathSciNetGoogle Scholar
  5. 5.
    Chou K S, Wang X J. Variational theory for Hessian equations. Comm Pure Appl Math, 2001, 54: 1029–1064CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Colesanti A, Salani P. Generalized solutions of Hessian equations. Bull Aust Math Soc, 1997, 56: 459–466CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Crandall M G, Ishii H, Lions P L. User’s guide to viscosity solutions of second order partial differential equations. Bull Amer Math Soc, 1992, 27: 1–67CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Crandall M G, Lions P L. Viscosity solutions of Hamilton-Jacobi equations. Trans Amer Math Soc, 1983, 277: 1–42CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Dai L M. The Dirichlet problem for Hessian quotient equations in exterior domains. J Math Anal Appl, 2011, 380: 87–93CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Dai L M, Bao J G. On uniqueness and existence of viscosity solutions to Hessian equations in exterior domains. Front Math China, 2011, 6: 221–230CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Guan B. The Dirichlet problem for Hessian equations on Riemannian manifolds. Calc Var, 1999, 8: 45–69CrossRefMATHGoogle Scholar
  12. 12.
    Guan B, Spruck J. Hypersurfaces of constant curvature in hyperbolic space II. J Eur Math Soc, 2010, 12: 797–817CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Guan B, Spruck J, Szapiel M. Hypersurfaces of constant curvature in hyperbolic space I. J Geom Anal, 2009, 19: 772–795CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Ivochkina N, Filimonenkova N. On the backgrounds of the theory of m-Hessian equations. Comm Pure Appl Anal, 2013, 12: 1687–1703CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Ivochkina N, Trudinger N, Wang X J. The Dirichlet Problem for Degenerate Hessian Equations. Comm Partial Differential Equations, 2004, 29: 219–235CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Li H G, Dai L M. The exterior Dirichlet problem for Hessian quotient equations. J Math Anal Appl, 2012, 393: 534–543CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Liu S, Bao J. The local regularity for strong solutions of the Hessian quotient equation. J Math Anal Appl, 2005, 303: 462–476CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Trudinger N S. On degenerate fully nonlinear elliptic equations in balls. Bull Aust Math Soc, 1987, 35: 299–307CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Trudinger N S. The Dirichlet problem for the prescribed curvature equations. Arch Ration Mech Anal, 1990, 111: 153–179CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Trudinger N. On the Dirichlet problem for Hessian equations. Acta Math, 1995, 175: 151–164CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Trudinger N. Weak solutions of Hessian equations. Comm Partial Differential Equations, 1997, 22: 1251–1261CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Urbas J. On the existence of nonclassical solutions for two class of fully nonlinear elliptic equations. Indiana Univ Math J, 1990, 39: 355–382CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Urbas J. Nonlinear oblique boundary value problems for Hessian equations in two dimensions. Ann Inst H Poincaré Anal Non Linéaire, 1995, 12: 507–575MATHMathSciNetGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of MathematicsHarbin Institute of TechnologyHarbinChina

Personalised recommendations