Frontiers of Mathematics in China

, Volume 8, Issue 5, pp 1047–1065 | Cite as

S. V. Kovalevskaya system, its generalization and discretization

  • Matteo Petrera
  • Yuri B. Suris
Research Article


We consider an integrable three-dimensional system of ordinary differential equations introduced by S. V. Kovalevskaya in a letter to G. Mittag-Leffler. We prove its isomorphism with the three-dimensional Euler top, and propose two integrable discretizations for it. Then we present an integrable generalization of the Kovalevskaya system, and study the problem of integrable discretization for this generalized system.


Birational map integrable map algebraically integrable system 


37J35 70H06 14H70 37K20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Borisov A V, Mamaev I S. Poisson Structures and Lie-algebras in Hamiltonian Mechanics. Izhevsk: Izd UdSU, 1999 (in Russian)zbMATHGoogle Scholar
  2. 2.
    Fairlie D B. An elegant integrable system. Phys Lett A, 1987, 119(9): 438–440MathSciNetCrossRefGoogle Scholar
  3. 3.
    Hirota R, Kimura K. Discretization of the Euler top. J Phys Soc Japan, 2000, 69: 627–630MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Hone A N W, Petrera M. Three-dimensional discrete systems of Hirota-Kimura type and deformed Lie-Poisson algebras. J Geom Mech, 2009, 1(1): 55–85MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Correspondence of S V Kovalevskaya and G Mittag-Leffler. Nauka, 1984Google Scholar
  6. 6.
    Petrera M, Pfadler A, Suris Yu B. On integrability of Hirota-Kimura type discretizations. Experimental study of the discrete Clebsch system. Exp Math, 2009, 18(2): 223–247zbMATHGoogle Scholar
  7. 7.
    Petrera M, Pfadler A, Suris Yu B. On integrability of Hirota-Kimura type discretizations. Regul Chaotic Dyn, 2011, 16(3–4): 245–289MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Petrera M, Suris Yu B. On the Hamiltonian structure of Hirota-Kimura discretization of the Euler top. Math Nachr, 2011, 283(11): 1654–1663CrossRefGoogle Scholar
  9. 9.
    Petrera M, Suris Yu B. Spherical geometry and integrable systems (in preparation)Google Scholar
  10. 10.
    Reyman A G, Semenov-Tian-Shansky M A. Group theoretical methods in the theory of finite-dimensional integrable systems. In: Dynamical Systems VII. Berlin: Springer, 1994Google Scholar
  11. 11.
    Suris Yu B. The Problem of Integrable Discretization: Hamiltonian Approach. Progress in Mathematics, Vol 219. Basel: Birkhäuser, 2003CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institut für Mathematik, MA 7-2Technische Universität BerlinBerlinGermany

Personalised recommendations