Frontiers of Mathematics in China

, Volume 8, Issue 5, pp 1031–1046

Exact construction of noncommutative instantons

Research Article
  • 99 Downloads

Abstract

We discuss the Atiyah-Drinfeld-Hitchin-Manin (ADHM) construction of U(N) instantons in noncommutative (NC) space and give some exact instanton solutions for various noncommutative settings. We also present a new formula which is crucial to show an origin of the instanton number for U(1) and to prove the one-to-one correspondence between moduli spaces of the noncommutative instantons and the ADHM data.

Keywords

Instantons noncommutative geometry 

MSC

81T13 81T75 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aganagic M, Gopakumar R, Minwalla S, Strominger A. Unstable solitons in noncommutative gauge theory. J High Energy Phys, 2001, 0104: 001MathSciNetCrossRefGoogle Scholar
  2. 2.
    Atiyah M F, Hitchin N J, Drinfeld V G, Manin Yu I. Construction of instantons. Phys Lett A, 1978, 65(3): 185–187MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Belavin A A, Polyakov A M, Schwartz A S, Tyupkin Y S. Pseudoparticle solutions of the Yang-Mills equations. Phys Lett B, 1975, 59: 85–87MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chu C-S. Non-commutative geometry from strings. hep-th/0502167Google Scholar
  5. 5.
    Corrigan E, Goddard P, Osborn H, Templeton S. Zeta function regularization and multi-instanton determinants. Nucl Phys B, 1979, 159: 469–496MathSciNetCrossRefGoogle Scholar
  6. 6.
    Dorey N, Hollowood T J, Khoze V V, Mattis M P. The calculus of many instantons. Phys Rep, 2002, 371: 231–459MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Douglas M R, Nekrasov N A. Noncommutative field theory. Rev Modern Phys, 2002, 73: 977–1029MathSciNetCrossRefGoogle Scholar
  8. 8.
    Furuuchi K. Instantons on noncommutative ℝ4 and projection operators. Progr Theoret Phys, 2000, 103: 1043–1068MathSciNetCrossRefGoogle Scholar
  9. 9.
    Furuuchi K. Equivalence of projections as gauge equivalence on noncommutative space. Comm Math Phys, 2001, 217: 579–593MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Furuuchi K. Topological charge of U(1) instantons on noncommutative ℝ4. hep-th/0010006Google Scholar
  11. 11.
    Furuuchi K. Dp-D(p + 4) in noncommutative Yang-Mills. J High Energy Phys, 2001, 0103: 033MathSciNetGoogle Scholar
  12. 12.
    Hamanaka M. Atiyah-Drinfeld-Hitchin-Manin and Nahm Constructions of localized solitons in noncommutative gauge theories. Phys Rev D, 2002, 65: 085022MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hamanaka M. Noncommutative solitons and D-branes. Ph D Thesis, University of Tokyo. 2003, hep-th/0303256Google Scholar
  14. 14.
    Hamanaka M. Noncommutative Ward’s conjecture and integrable systems. Nuclear Phys B, 2006, 741: 368–389MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Hamanaka M, Nakatsu T. ADHM construction and group actions for noncommutative instantonsGoogle Scholar
  16. 16.
    Hamanaka M, Nakatsu T. Noncommutative instantons revisited. J Phys: Conference Ser (to appear)Google Scholar
  17. 17.
    Harvey J A. Komaba Lectures on Noncommutative Solitons and D-branes. hep-th/0102076Google Scholar
  18. 18.
    Ishikawa T, Kuroki S I, Sako A. Instanton number calculus on noncommutative ℝ4. J High Energy Phys, 2002, 0208: 028MathSciNetCrossRefGoogle Scholar
  19. 19.
    Konechny A, Schwarz A. Introduction to M(atrix) theory and noncommutative geometry. Phys Rep, 2002, 360: 353–421MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Konechny A, Schwarz A. Introduction to M(atrix) theory and noncommutative geometry, II. Phys Rep, 2002, 360: 422–465MathSciNetCrossRefGoogle Scholar
  21. 21.
    Lechtenfeld O. Noncommutative instantons and solitons. Fortschr Phys, 2004, 52: 596MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Maeda Y, Sako A. Noncommutative deformation of spinor zero mode and ADHM construction. J Math Phys, 2012, 53: 022303MathSciNetCrossRefGoogle Scholar
  23. 23.
    Mason L J, Woodhouse N M. Integrability, Self-Duality, and Twistor Theory. Oxford: Oxford Univ Press, 1996MATHGoogle Scholar
  24. 24.
    Moyal J E. Quantum mechanics as a statistical theory. Proc Cambridge Phil Soc, 1949, 45: 99–124MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Nakajima H. Resolutions of moduli spaces of ideal instantons on ℝ4. In: Topology, Geometry and Field Theory. Singapore World Sci, 1994, 129–136Google Scholar
  26. 26.
    Nakajima H. Lectures on Hilbert Schemes of Points on Surfaces. Providence: Amer Math Soc, 1999MATHGoogle Scholar
  27. 27.
    Nakajima H, Yoshioka K. Instanton counting on blowup. I. Invent Math, 2005, 162: 313–355MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Nekrasov N A. Trieste Lectures on Solitons in Noncommutative Gauge Theories. hep-th/0011095Google Scholar
  29. 29.
    Nekrasov N A. Seiberg-Witten prepotential from instanton counting. Adv Theor Math Phys, 2004, 7: 831–864MathSciNetGoogle Scholar
  30. 30.
    Nekrasov N, Schwarz A. Instantons on noncommutative ℝ4, and (2,0) superconformal six dimensional theory. Comm Math Phys, 1998, 198: 689–703MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Osborn H. Calculation of multi-instanton determinants. Nuclear Phys B, 1979, 159: 497–511MathSciNetCrossRefGoogle Scholar
  32. 32.
    Penrose R. Twistor algebra. J Math Phys, 1967, 8: 345–366MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Sako A. Instanton number of noncommutative U(n) gauge theory. J High Energy Phys, 2003, 04: 023MathSciNetCrossRefGoogle Scholar
  34. 34.
    Schaposnik F A. Noncommutative solitons and instantons. Braz J Phys, 2004, 34: 1349–1357CrossRefGoogle Scholar
  35. 35.
    Seiberg N, Witten E. String theory and noncommutative geometry. J High Energy Phys, 1999, 9909: 032MathSciNetCrossRefGoogle Scholar
  36. 36.
    Szabo R J. Quantum field theory on noncommutative spaces. Phys Rep, 2003, 378: 207–299MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Tian Y. Topological charge of ADHM instanton on ℝNC2 × ℝ2. Modern Phys Lett A, 2004, 19: 1315–1317MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Tian Y, Zhu C J, Song X C. Topological charge of noncommutative ADHM instanton. Modern Phys Lett A, 2003, 18: 1691–1703MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Ward R S. Integrable and solvable systems, and relations among them. Philos Trans R Soc Lond Ser A, 1985, 315: 451–457MATHCrossRefGoogle Scholar
  40. 40.
    Ward R S, Wells R O. Twistor Geometry and Field Theory. Cambridge: Cambridge Univ Press, 1990CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of MathematicsNagoya UniversityNagoyaJapan
  2. 2.Institute for Fundamental SciencesSetsunan UniversityNeyagawa, OsakaJapan

Personalised recommendations