Frontiers of Mathematics in China

, Volume 8, Issue 4, pp 907–921 | Cite as

Herz type Besov and Triebel-Lizorkin spaces with variable exponent

  • Chune Shi
  • Jingshi Xu
Research Article


The Herz type Besov and Triebel-Lizorkin spaces with variable exponent are introduced. Then characterizations of these new spaces by maximal functions are given.


Variable exponent Herz space Besov space Triebel-Lizorkin space equivalent norm maximal function 


46E35 42B25 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Almeida A, Hasanov J, Samko S. Maximal and potential operators in variable exponent Morrey spaces. Georgian Math J, 2008, 15: 198–208MathSciNetGoogle Scholar
  2. 2.
    Almeida A, Höstö P. Besov spaces with variable smoothness and integrability. J Funct Anal, 2010, 258: 1628–1655MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Andersen K, John R. Weighted inequalities for vector-valued maximal functions and singular integrals. Studia Math, 1980, 69: 19–31MathSciNetzbMATHGoogle Scholar
  4. 4.
    Cruz-Uribe D, Fiorenza A, Martell C, Pérez C. The Boundedness of classical operators on valible L p spaces. Ann Acad Sci Fenn Math, 2006, 31: 239–264MathSciNetGoogle Scholar
  5. 5.
    Cruz-Uribe D, Fiorenza A, Neugebauer C. The maximal function on variable L p spaces. Ann Acad Sci Fenn Math, 2003, 28: 223–238MathSciNetzbMATHGoogle Scholar
  6. 6.
    Diening L. Maximal function on generalized Lebesgue spaces L p(x). Math Inequal Appl, 2004, 7: 245–253MathSciNetzbMATHGoogle Scholar
  7. 7.
    Diening L. Maximal functions on Musielak-Orlicz spaces and generalized Lebesgue spaces. Bull Sci Math, 2005, 129: 657–700MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Diening L, Harjulehto P, Hästö P, Růžička M. Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics, Vol 2017. Berlin: Springer-Verlag, 2011zbMATHCrossRefGoogle Scholar
  9. 9.
    Diening L, Hästö P, Roudenko S. Function spaces of variable smoothness and integrability. J Funct Anal, 2009, 256: 1731–1768MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Fefferman C, Stein E. Some maximal inequalities. Amer J Math, 1971, 93: 107–115MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Frazier M, Jawerth B. Decomposition of Besov spaces. Indiana Univ Math J, 1985, 34: 777–799MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Gurka P, Harjulehto P, Nekvinda A. Bessel potential spaces with variable exponent. Math Inequal Appl, 2007, 10: 661–676MathSciNetzbMATHGoogle Scholar
  13. 13.
    Harjulehto P, Hästö P, Le U V, Nuortio M. Overview of differential equations with non-standard growth. Nonlinear Anal, 2010, 72: 4551–4574MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Hästö P. Local-to-global results in variable exponent spaces. Math Res Lett, 2009, 16(2): 263–278MathSciNetzbMATHGoogle Scholar
  15. 15.
    Hernández E, Yang D. Interpolation of Herz spaces and applications. Math Nachr, 1999, 205: 69–87MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Izuki M. Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization. Anal Math, 2010, 36: 33–50MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Izuki M. Boundedness of commutators on Herz spaces with variable exponent. Rend Circ Mat Palermo, 2010, 59: 199–213MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Izuki M. Vector-valued inequalities on Herz spaces and characterizations of Herz-Sobolev spaces with variable exponent. Glas Mat, 2010, 45: 475–503MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Kempka H. 2-Microlocal Besov and Triebel-Lizorkin spaces of variable integrability. Rev Mat Complut, 2009, 22: 227–325MathSciNetzbMATHGoogle Scholar
  20. 20.
    Kempka H. Atomic, molecular and wavelet decomposition of generalized 2-microlocal Besov spaces. J Funct Spaces Appl, 2010, 8: 129–165MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Kováčik O, Rákosník J. On spaces L p(x)and W k,p(x). Czechoslovak Math J, 1991, 41: 592–681MathSciNetGoogle Scholar
  22. 22.
    Li X, Yang D. Boundedness of some sublinear operators on Herz spaces. Illinois J Math, 1996, 40: 484–501MathSciNetzbMATHGoogle Scholar
  23. 23.
    Lu S. Multipliers and Herz type spaces. Sci China Series A: Math, 2008, 51(10): 1919–1936zbMATHCrossRefGoogle Scholar
  24. 24.
    Lu S, Yabuta K, Yang D. The Boundedness of some sublinear operators in weighted Herz-type spaces. Kodai Math J, 2000, 23: 391–410MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Lu S, Yang D. The decomposition of the weighted Herz spaces and its application. Sci China Series A: Math, 1995, 38: 147–158MathSciNetzbMATHGoogle Scholar
  26. 26.
    Lu S, Yang D, Hu G. Herz Type Spaces and Their Applications. Beijing: Science Press, 2008Google Scholar
  27. 27.
    Nekvinda A. Hardy-Littlewood maximal operator on L p(x). Math Inequal Appl, 2004, 7: 255–265MathSciNetzbMATHGoogle Scholar
  28. 28.
    Peetre J. On spaces of Triebel-Lizorkin type. Ark Mat, 1975, 13: 123–130MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Rychkov V S. On a theorem of Bui, Paluszyński, and Taibleson. Proc Steklov Inst Math, 1999, 227: 280–292MathSciNetGoogle Scholar
  30. 30.
    Stein E, Weiss G. Introduction to Fourier Analysis on Euclidean Spaces. Princeton: Princeton Univ Press, 1971zbMATHGoogle Scholar
  31. 31.
    Tang L, Yang D. Boundedness of vector-valued operators on weighted Herz spaces. Approx Theory & Its Appl, 2000, 16: 58–70MathSciNetzbMATHGoogle Scholar
  32. 32.
    Ullrich T. Continuous characterizations of Besov-Lizorkin-Triebel spaces and new interpretations as coorbits. J Funct Spaces Appl, 2012, doi: 10.1155/2012/163213Google Scholar
  33. 33.
    Xu J. A discrete characterization of the Herz-type Triebel-Lizorkin spaces and its applications. Acta Math Sci Ser B Engl Ed, 2004, 24(3): 412–420MathSciNetzbMATHGoogle Scholar
  34. 34.
    Xu J. Equivalent norms of Herz type Besov and Triebel-Lizorkin spaces. J Funct Spaces Appl, 2005, 3(1): 17–31MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Xu J. The relation between variable Bessel potential spaces and Triebel-Lizorkin spaces. Integral Transforms Spec Funct, 2008, 19(8): 599–605MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Xu J. Variable Besov spaces and Triebel-Lizorkin spaces. Ann Acad Sci Fen Math, 2008, 33: 511–522zbMATHGoogle Scholar
  37. 37.
    Xu J. An atomic decomposition of variable Besov and Triebel-Lizorkin spaces. Armen J Math, 2009, 2(1): 1–12MathSciNetGoogle Scholar
  38. 38.
    Xu J, Yang D. Applications of Herz-type Triebel-Lizorkin spaces. Acta Math Sci Ser B Engl Ed, 2003, 23(3): 328–338MathSciNetzbMATHGoogle Scholar
  39. 39.
    Xu J, Yang D. Herz-type Triebel-Lizorkin spaces (I). Acta Math Sinica (Engl Ser), 2005, 21: 643–654zbMATHCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of MathematicsHainan Normal UniversityHaikouChina

Personalised recommendations