Frontiers of Mathematics in China

, Volume 7, Issue 2, pp 273–303

General techniques for constructing variational integrators

Research Article

Abstract

The numerical analysis of variational integrators relies on variational error analysis, which relates the order of accuracy of a variational integrator with the order of approximation of the exact discrete Lagrangian by a computable discrete Lagrangian. The exact discrete Lagrangian can either be characterized variationally, or in terms of Jacobi’s solution of the Hamilton-Jacobi equation. These two characterizations lead to the Galerkin and shooting constructions for discrete Lagrangians, which depend on a choice of a numerical quadrature formula, together with either a finite-dimensional function space or a one-step method. We prove that the properties of the quadrature formula, finite-dimensional function space, and underlying one-step method determine the order of accuracy and momentum-conservation properties of the associated variational integrators. We also illustrate these systematic methods for constructing variational integrators with numerical examples.

Keywords

Geometric numerical integration geometric mechanics symplectic integrator variational integrator Lagrangian mechanics 

MSC

37J10 65P10 70H25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benettin G, Giorgilli A. On the Hamiltonian interpolation of near to the identity symplectic mappings with application to symplectic integration algorithms. J Stat Phys, 1994, 74: 1117–1143MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Bou-Rabee N, Owhadi H. Stochastic variational integrators. IMA J Numer Anal, 2009, 29(2): 421–443MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Cortés J, Martínez S. Non-holonomic integrators. Nonlinearity, 2001, 14(5): 1365–1392MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Cuell C, Patrick G. Geometric discrete analogues of tangent bundles and constrained Lagrangian systems. J Geom Phys, 2009, 59(7): 976–997MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Fetecau R, Marsden J, Ortiz M, West M. Nonsmooth Lagrangian mechanics and variational collision integrators. SIAM Journal on Applied Dynamical Systems, 2003, 2(3): 381–416MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Hairer E. Backward analysis of numerical integrators and symplectic methods. Scientific Computation and Differential Equations (Auckland, 1993). Ann Numer Math, 1994, 1(1–4): 107–132MathSciNetMATHGoogle Scholar
  7. 7.
    Hairer E, Lubich C. The life-span of backward error analysis for numerical integrators. Numer Math, 1997, 76: 441–462MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Hairer E, Lubich C, Wanner G. Geometric Numerical Integration. 2nd ed. Springer Series in Computational Mathematics, Vol 31. Berlin: Springer-Verlag, 2006MATHGoogle Scholar
  9. 9.
    Iserles A, Munthe-Kaas H, Nørsett S, Zanna A. Lie-group methods. In: Acta Numerica, Vol 9. Cambridge: Cambridge University Press, 2000, 215–365Google Scholar
  10. 10.
    Kahan W. Further remarks on reducing truncation errors. Commun ACM, 1965, 8: 40CrossRefGoogle Scholar
  11. 11.
    Keller H B. Numerical methods for two-point boundary value problems. New York: Dover Publications Inc, 1992Google Scholar
  12. 12.
    Lall S, West M. Discrete variational Hamiltonian mechanics. J Phys A, 2006, 39(19): 5509–5519MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Lee T, Leok M, McClamroch N. Lie group variational integrators for the full body problem. Comput Methods Appl Mech Engrg, 2007, 196(29–30): 2907–2924MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Lee T, Leok M, McClamroch N. Lie group variational integrators for the full body problem in orbital mechanics. Celestial Mech Dynam Astronom, 2007, 98(2): 121–144MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Lee T, Leok M, McClamroch N. Lagrangian mechanics and variational integrators on two-spheres. Int J Numer Methods Eng, 2009, 79(9): 1147–1174MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Leok M. Generalized Galerkin variational integrators: Lie group, multiscale, and pseudospectral methods. Preprint, 2004, arXiv: math.NA/0508360Google Scholar
  17. 17.
    Leok M, Shingel T. Prolongation-collocation variational integrators. IMA J Numer Anal (in press), arXiv: 1101.1995 [math.NA]Google Scholar
  18. 18.
    Leok M, Zhang J. Discrete Hamiltonian variational integrators. IMA J Numer Anal, 2011, 31(4): 1497–1532MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Lew A, Marsden J E, Ortiz M, West M. Asynchronous variational integrators. Arch Ration Mech Anal, 2003, 167(2): 85–146MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Leyendecker S, Marsden J, Ortiz M. Variational integrators for constrained mechanical systems. Z Angew Math Mech, 2008, 88: 677–708MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Marsden J, Pekarsky S, Shkoller S. Discrete Euler-Poincaré and Lie-Poisson equations. Nonlinearity, 1999, 12(6): 1647–1662MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Marsden J E, West M. Discrete mechanics and variational integrators. Acta Numer, 2001, 10: 357–514MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Oliver M, West M, Wulff C. Approximate momentum conservation for spatial semidiscretizations of nonlinear wave equations. Numer Math, 2004, 97: 493–535MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Patrick G, Spiteri R, Zhang W, Cuell C. On converting any one-step method to a variational integrator of the same order. In: 7th International Conference on Multibody systems, Nonlinear Dynamics, and Control, Vol 4. 2009, 341–349Google Scholar
  25. 25.
    Reich S. Backward error analysis for numerical integrators. SIAM J Numer Anal, 1999, 36: 1549–1570MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Stern A, Grinspun E. Implicit-explicit variational integration of highly oscillatory problems. Multiscale Model Simul, 2009, 7(4): 1779–1794MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of CaliforniaSan Diego, La JollaUSA

Personalised recommendations