Frontiers of Mathematics in China

, Volume 7, Issue 5, pp 1005–1018 | Cite as

List edge and list total coloring of 1-planar graphs

  • Xin Zhang
  • Jianliang Wu
  • Guizhen LiuEmail author
Research Article


A graph is 1-planar if it can be drawn on the plane so that each edge is crossed by at most one other edge. In this paper, it is proved that each 1-planar graph with maximum degree Δ is (Δ+1)-edge-choosable and (Δ+2)-total-choosable if Δ ⩾ 16, and is Δ-edge-choosable and (Δ+1)-total-choosable if Δ ⩾ 21. The second conclusion confirms the list coloring conjecture for the class of 1-planar graphs with large maximum degree.


1-planar graph list coloring conjecture discharging 


05C10 05C15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albertson M O, Mohar B. Coloring vertices and faces of locally planar graphs. Graphs Combin, 2006, 22: 289–295MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bondy J A, Murty U S R. Graph Theory with Applications. New York: North-Holland, 1976zbMATHGoogle Scholar
  3. 3.
    Borodin O V. Solution of Ringel’s problems on the vertex-face coloring of plane graphs and on the coloring of 1-planar graphs. Diskret Analiz, 1984, 41: 12–26 (in Russian)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Borodin O V. An extension of Kotzig theorem and the list edge coloring of planar graphs. Mat Zametki, 1990, 48: 22–48 (in Russian)MathSciNetGoogle Scholar
  5. 5.
    Borodin O V. A new proof of the 6 color theorem. J Graph Theory, 1995, 19(4): 507–521MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Borodin O V, Dmitriev I G, Ivanova A O. The height of a 4-cycle in triangle-free 1-planar graphs with minimum degree 5. J Appl Ind Math, 2009, 3(1): 28–31CrossRefGoogle Scholar
  7. 7.
    Borodin O V, Kostochka A V, Raspaud A, Sopena E. Acyclic colouring of 1-planar graphs. Discrete Appl Math, 2001, 114: 29–41MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Borodin O V, Kostochka A V, Woodall D R. List edge and list total colourings of multigraphs. J Combin Theory Ser B, 1997, 71: 184–204MathSciNetCrossRefGoogle Scholar
  9. 9.
    Fabrici I, Madaras T. The structure of 1-planar graphs. Discrete Math, 2007, 307: 854–865MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Harris A J. Problems and Conjectures in Extremal Graph Theory. Ph D Dissertation. Cambridge: Cambridge University, 1984Google Scholar
  11. 11.
    Hou J, Liu G, Wu J L. Some results on list total colorings of planar graphs. Lecture Notes in Computer Science, 2007, 4489: 320–328CrossRefGoogle Scholar
  12. 12.
    Hudák D, Madaras T. On local structures of 1-planar graphs of minimum degree 5 and girth 4. Discuss Math Graph Theory, 2009, 29: 385–400MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Jensen T R, Toft B. Graph Coloring Problems. New York: John Wiley & Sons, 1995zbMATHGoogle Scholar
  14. 14.
    Juvan M, Mohar B, Škrekovski R. List total colorings of graphs. Combin Probab Comput, 1998, 7: 181–188MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Juvan M, Mohar B, Škrekovski R. Graphs of degree 4 are 5-edge-choosable. J Graph Theory, 1999, 32: 250–262MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Ringel G. Ein sechsfarbenproblem auf der Kugel. Abh Math Sem Hamburg Univ, 1965, 29: 107–117MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Suzuki Y. Optimal 1-planar graphs which triangulate other surfaces. Discrete Math, 2010, 310: 6–11MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Wang W, Lih K W. Choosability, edge choosability and total choosability of outerplanar graphs. Eur J Combin, 2001, 22: 71–78MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Wang W, Lih K W. Coupled choosability of plane graphs. J Graph Theory, 2008, 58: 27–44MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Wu J L, Wang P. List-edge and list-total colorings of graphs embedded on hyperbolic surfaces. Discrete Math, 2008, 308: 6210–6215MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Zhang X, Liu G. On edge colorings of 1-planar graphs without adjacent triangles. Inform Process Lett, 2012, 112(4): 138–142MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Zhang X, Liu G. On edge colorings of 1-planar graphs without chordal 5-cycles. Ars Combin, 2012, 104 (in press)Google Scholar
  23. 23.
    Zhang X, Liu G, Wu J L. Edge coloring of triangle-free 1-planar graphs. J Shandong Univ (Nat Sci), 2010, 45(6): 15–17 (in Chinese)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Zhang X, Liu G, Wu J L. Structural properties of 1-planar graphs and an application to acyclic edge coloring. Sci Sin Math, 2010, 40: 1025–1032 (in Chinese)Google Scholar
  25. 25.
    Zhang X, Liu G, Wu J L. On the linear arboricity of 1-planar graphs. OR Trans, 2011, 15(3): 38–44zbMATHGoogle Scholar
  26. 26.
    Zhang X, Liu G, Wu J L. Light subgraphs in the family of 1-planar graphs with high minimum degree. Acta Math Sin (Engl Ser), doi:10.1007/s10114-011-0439-3Google Scholar
  27. 27.
    Zhang X, Wu J L. On edge colorings of 1-planar graphs. Inform Process Lett, 2011, 111(3): 124–128MathSciNetCrossRefGoogle Scholar
  28. 28.
    Zhang X, Wu J L, Liu G. New upper bounds for the heights of some light subgraphs in 1-planar graphs with high minimum degree. Discrete Math Theor Comput Sci, 2011, 13(3): 9–16MathSciNetGoogle Scholar
  29. 29.
    Zhang X, Yu Y, Liu G. On (p, 1)-total labelling of 1-planar graphs. Cent Eur J Math, 2011, 9(6): 1424–1434MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.School of MathematicsShandong UniversityJinanChina

Personalised recommendations