Frontiers of Mathematics in China

, Volume 5, Issue 3, pp 531–539 | Cite as

Weighted Hardy operators and commutators on Morrey spaces

Research Article


The operator norms of weighted Hardy operators on Morrey spaces are worked out. The other purpose of this paper is to establish a sufficient and necessary condition on weight functions which ensures the boundedness of the commutators of weighted Hardy operators (with symbols in BMO(ℝn)) on Morrey spaces.


Weighted Hardy operator BMO commutator Morrey space 


42B25 26D15 42B99 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson K F, Muckenhoupt B. Weighted weak type Hardy inequalities with application to Hilbert transforms and maximal functions. Studia Math, 1982, 72: 9–26MathSciNetGoogle Scholar
  2. 2.
    Bastero J, Milman M, Ruiz F J. Commutators of the maximal and sharp functions. Proc Amer Math Soc, 2000, 128: 3329–3334MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Carton-Lebrun C, Fosset M. Moyennes et quotients de Taylor dans BMO. Bull Soc Roy Sci Liège, 1984, 53: 85–87MATHMathSciNetGoogle Scholar
  4. 4.
    Chiarenza F, Frasca M. Morrey spaces and Hardy-Littlewood maximal function. Rend Mat, 1987, 7: 273–279MATHMathSciNetGoogle Scholar
  5. 5.
    Coifman R R, Rochberg R, Weiss G. Factorization theorems for Hardy spaces in several variables. Ann Math, 1976, 103: 611–635CrossRefMathSciNetGoogle Scholar
  6. 6.
    Ding Y, Lu S Z, Yabuta K. On commutators of Marcinkiewicz integrals with rough kernel. J Math Anal Appl, 2002, 275: 60–68MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Duong X T, Yan L X. On commutators of fractional integrals. Proc Amer Math Soc, 2002, 132: 3549–3557CrossRefMathSciNetGoogle Scholar
  8. 8.
    Fu Z W, Liu Z G, Lu S Z. Commutators of weighted Hardy operators. Proc Amer Math Soc, 2009, 137: 3319–3328MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Fu Z W, Liu Z G, Lu S Z, Wang H B. Characterization for commutators of n-dimensional fractional Hardy operators. Sci China, Ser A, 2007, 50: 1418–1426MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Hardy G H, Littlewood J, Pólya G. Inequalities. 2nd ed. London/New York: Cambridge University Press, 1952MATHGoogle Scholar
  11. 11.
    Komori Y. Notes on commutators of Hardy operators. Int J Pure Appl Math, 2003, 7: 329–334MATHMathSciNetGoogle Scholar
  12. 12.
    Lacey M T. Commutators with Riesz potentials in one and several parameters. Hokkaido Math J, 2007, 36: 175–191MATHMathSciNetGoogle Scholar
  13. 13.
    Long S C, Wang J. Commutators of Hardy operators. J Math Anal Appl, 2002, 274: 626–644MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Morrey C. On the solutions of quasi-linear elliptic partial differential equations. Trans Amer Math Soc, 1938, 43: 126–166MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Muckenhoupt B. Hardy’s inequality with weights. Studia Math, 1972, 44: 31–38MATHMathSciNetGoogle Scholar
  16. 16.
    Perez C. Endpoints for commutators of Singular integrals operators. J Funct Anal, 1995, 128: 163–185MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Xiao J. L p and BMO bounds of weighted Hardy-Littlewood averages. J Math Anal Appl, 2001, 262: 660–666MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of MathematicsLinyi Normal UniversityLinyiChina
  2. 2.School of Mathematical SciencesBeijing Normal UniversityBeijingChina

Personalised recommendations