Frontiers of Mathematics in China

, Volume 4, Issue 3, pp 407–424 | Cite as

Bifurcation in infinite dimensional spaces and applications in spatiotemporal biological and chemical models

Survey Article

Abstract

Recent advances in abstract local and global bifurcation theory is briefly reviewed. Several applications are included to illustrate the applications of abstract theory, and it includes Turing instability of chemical reactions, pattern formation in water limited ecosystems, and diffusive predator-prey models.

Keywords

Bifurcation reaction-diffusion model 

MSC

35B32 35K57 35J60 92E20 92D40 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ambrosetti A, Prodi G. A Primer of Nonlinear Analysis. Cambridge Studies in Advanced Mathematics, Vol 34. Cambridge: Cambridge University Press, 1995Google Scholar
  2. 2.
    Cantrell R S, Cosner C. Spatial Ecology via Reaction-diffusion Equation. Wiley Series in Mathematical and Computational Biology. New York: John Wiley & Sons Ltd, 2003Google Scholar
  3. 3.
    Chang K -C. Methods in Nonlinear Analysis. Springer Monographs in Mathematics. Berlin: Springer-Verlag, 2005Google Scholar
  4. 4.
    Cheng K S. Uniqueness of a limit cycle for a predator-prey system. SIAM J Math Anal, 1981, 12(4): 541–548CrossRefMathSciNetMATHGoogle Scholar
  5. 5.
    Chow S N, Hale J K. Methods of Bifurcation Theory. New York-Berlin: Springer-Verlag, 1982MATHGoogle Scholar
  6. 6.
    Conway E D. Diffusion and predator-prey interaction: pattern in closed systems. In: Fitzgibbon W E, ed. Partial Differential Equations and Dynamical Systems. Res Notes in Math, Vol 101. Boston-London: Pitman, 1984, 85–133Google Scholar
  7. 7.
    Crandall M G, Rabinowitz P H. Bifurcation from simple eigenvalues. Jour Func Anal, 1971, 8: 321–340CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    Crandall M G, Rabinowitz P H. Bifurcation, perturbation of simple eigenvalues and linearized stability. Arch Rational Mech Anal, 1973, 52: 161–180CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    De Kepper P, Castets V, Dulos E, Boissonade J. Turing-type chemical patterns in the chlorite-iodide-malonic acid reaction. Physica D, 1991, 49: 161–169CrossRefGoogle Scholar
  10. 10.
    Deimling K. Nonlinear Functional Analysis. Berlin-New York: Springer-Verlag, 1985MATHGoogle Scholar
  11. 11.
    Du Y H, Shi J P. Some recent results on diffusive predator-prey models in spatially heterogeneous environment. In: Brunner H, Zhao X Q, Zou X F, eds. Nonlinear Dynamics and Evolution Equations. Fields Institute Communications, 48. Providence: American Mathematical Society, 2006, 95–135Google Scholar
  12. 12.
    Epstein I R, Pojman J A. An Introduction to Nonlinear Chemical Dynamics. Oxford: Oxford University Press, 1998Google Scholar
  13. 13.
    Gray P, Scott S K. Chemical Oscillations and Instabilities: Nonlinear Chemical Kinetics. Oxford: Clarendon Press, 1990Google Scholar
  14. 14.
    Han S M, Benaroya H, Wei T. Dynamics of transversely vibrating beams using four engineering theories. Jour Sound and Vibr, 1999, 225(5): 935–988CrossRefGoogle Scholar
  15. 15.
    Henry D. Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, Vol 840. Berlin-New York: Springer-Verlag, 1981MATHGoogle Scholar
  16. 16.
    Hsu S -B. Ordinary Differential Equations with Applications. Series on Applied Mathematics, 16. Hackensack: World Scientific Publishing Co Pte Ltd, 2006MATHGoogle Scholar
  17. 17.
    Hsu S-B, Shi J P. Relaxation oscillator profile of limit cycle in predator-prey system. Disc Cont Dyns Syst -B (to appear)Google Scholar
  18. 18.
    Jang J, Ni W -M, Tang M X. Global bifurcation and structure of Turing patterns in the 1-D Lengyel-Epstein model. J Dynam Differential Equations, 2004, 16(2): 297–320CrossRefMathSciNetMATHGoogle Scholar
  19. 19.
    Jiang J F, Shi J P. Bistability dynamics in some structured ecological models. In: Spatial Ecology: A Collection of Essays. Boca Raton: CRC Press, 2009 (in press)Google Scholar
  20. 20.
    Kielhöfer H. Bifurcation Theory. An Introduction with Applications to PDEs. Applied Mathematical Sciences, Vol 156. New York: Springer-Verlag, 2004Google Scholar
  21. 21.
    Lengyel I, Epstein I R. Modeling of Turing structure in the Chlorite-iodide-malonic acid-starch reaction system. Science, 1991, 251: 650–652CrossRefGoogle Scholar
  22. 22.
    Lengyel I, Epstein I R. A chemical approach to designing Turing patterns in reaction-diffusion system. Proc Natl Acad Sci USA, 1992, 89: 3977–3979CrossRefMATHGoogle Scholar
  23. 23.
    Liu P, Shi J P, Wang Y W. Imperfect transcritical and pitchfork bifurcations. Jour Func Anal, 2007, 251(2): 573–600CrossRefMathSciNetMATHGoogle Scholar
  24. 24.
    López-Gómez J. Spectral Theory and Nonlinear Functional Analysis. Chapman & Hall/CRC Research Notes in Mathematics, Vol 426. Boca Raton: Chapman & Hall/CRC, 2001MATHGoogle Scholar
  25. 25.
    Medvinsky A B, Petrovskii S V, Tikhonova I A, Malchow H, Li B -L. Spatiotemporal complexity of plankton and fish dynamics. SIAM Rev, 2002, 44(3): 311–370CrossRefMathSciNetMATHGoogle Scholar
  26. 26.
    Meron E, Gilad E, von Hardenberg J, Shachak M, Zarmi Y. Vegetation patterns along a rainfall gradient. Chaos Solitons Fractals, 2004, 19: 367–376CrossRefMATHGoogle Scholar
  27. 27.
    Murray J D. Mathematical Biology. I. An Introduction. 3rd Ed. Interdisciplinary Applied Mathematics, Vol 17. New York: Springer-Verlag, 2003Google Scholar
  28. 28.
    Murray J D. Mathematical Biology. II. Spatial Models and Biomedical Applications. Interdisciplinary Applied Mathematics, Vol 18. New York: Springer-Verlag, 2003Google Scholar
  29. 29.
    Ni W -M, Tang M X. Turing patterns in the Lengyel-Epstein system for the CIMA reaction. Trans Amer Math Soc, 2005, 357(10): 3953–3969CrossRefMathSciNetMATHGoogle Scholar
  30. 30.
    Nirenberg L. Topics in Nonlinear Functional Analysis. Courant Lecture Notes in Mathematics, Vol 6. New York University, Courant Institute of Mathematical Sciences, New York. Providence: American Mathematical Society, 2001MATHGoogle Scholar
  31. 31.
    Nishiura Y. Global structure of bifurcating solutions of some reaction-diffusion systems. SIAM J Math Anal, 1982, 13(4): 555–593CrossRefMathSciNetMATHGoogle Scholar
  32. 32.
    Okubo A, Levin S. Diffusion and Ecological Problems: Modern Perspectives. 2nd Ed. Interdisciplinary Applied Mathematics, Vol 14. New York: Springer-Verlag, 2001Google Scholar
  33. 33.
    Pejsachowicz J, Rabier P J. Degree theory for C 1 Fredholm mappings of index 0. J Anal Math, 1998, 76: 289–319CrossRefMathSciNetMATHGoogle Scholar
  34. 34.
    Rabinowitz P H. Some global results for nonlinear eigenvalue problems. Jour Func Anal, 1971, 7: 487–513CrossRefMathSciNetMATHGoogle Scholar
  35. 35.
    Reiss E L. Column buckling—an elementary example of bifurcation. In: Keller J B, Antman S, eds. Bifurcation Theory and Nonlinear Eigenvalue Problems. New York-Amsterdam: W A Benjamin, Inc, 1969, 1–16Google Scholar
  36. 36.
    Reiss E L. Imperfect bifurcation. In: Applications of Bifurcation Theory (Proc Advanced Sem, Univ Wisconsin, Madison, Wis, 1976). Publ Math Res Center Univ Wisconsin, No 38. New York: Academic Press, 1977, 37–71Google Scholar
  37. 37.
    Rosenzweig M L. Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science, 1971, 171(3969): 385–387CrossRefGoogle Scholar
  38. 38.
    Shi J P. Persistence and bifurcation of degenerate solutions. Jour Func Anal, 1999, 169(2): 494–531CrossRefMATHGoogle Scholar
  39. 39.
    Shi J P. Solution Set of Semilinear Elliptic Equations: Global Bifurcation and Exact Multiplicity. Singapore: World Scientific Publishing Co Pte Ltd, 2009Google Scholar
  40. 40.
    Shi J P, Wang X F. On global bifurcation for quasilinear elliptic systems on bounded domains. Jour Diff Equations, 2009, 246(7): 2788–2812CrossRefMathSciNetMATHGoogle Scholar
  41. 41.
    Timosehnko S P. History of Strength of Materials. New York: Dover Publications, Inc, 1953Google Scholar
  42. 42.
    Turing A M. The chemical basis of morphogenesis. Philosophical Transaction of Royal Society of London, 1952, B237: 37–72CrossRefGoogle Scholar
  43. 43.
    von Hardenberg J, Meron E, Shachak M, Zarmi Y. Diversity of vegetation patterns and desertification. Phys Rev Lett, 2001, 87: 198101Google Scholar
  44. 44.
    Yi F Q, Wei J J, Shi J P. Diffusion-driven instability and bifurcation in the Lengyel-Epstein system. Nonlinear Anal Real World Appl, 2008, 9(3): 1038–1051CrossRefMathSciNetMATHGoogle Scholar
  45. 45.
    Yi F Q, Wei J J, Shi J P. Bifurcation and spatio-temporal patterns in a diffusive homogenous predator-prey system. Jour Diff Equations, 2009, 246(5): 1944–1977CrossRefMathSciNetMATHGoogle Scholar
  46. 46.
    Yi F Q, Wei J J, Shi J P. Global asymptotical behavior of the Lengyel-Epstein reaction-diffusion system. Appl Math Lett, 2009, 22(1): 52–55CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  1. 1.Department of MathematicsCollege of William and MaryWilliamsburgUSA
  2. 2.School of MathematicsHarbin Normal UniversityHarbinChina

Personalised recommendations