Current work and open problems in the numerical analysis of Volterra functional equations with vanishing delays

Survey Article

Abstract

The aims of this paper are (i) to present a survey of recent advances in the analysis of superconvergence of collocation solutions for linear Volterra-type functional integral and integro-differential equations with delay functions θ(t) vanishing at the initial point of the interval of integration (with ia(t) = qt (0 < q < 1, t ⩾ 0) being an important special case), and (ii) to point, by means of a list of open problems, to areas in the numerical analysis of such Volterra functional equations where more research needs to be carried out.

Keywords

Volterra functional integral and integro-differential equation vanishing delay pantograph equation collocation solution optimal order of superconvergence 

MSC

65R20 34K06 34K28 

References

  1. 1.
    Ali I, Brunner H, Tang T. A spectral method for pantograph-type delay differential equations and its convergence analysis. J Comput Math (in press)Google Scholar
  2. 2.
    Ali I, Brunner H, Tang T. Spectral methods for pantograph differential and integral equations with multiple delays (to appear)Google Scholar
  3. 3.
    Andreoli G. Sulle equazioni integrali. Rend Circ Mat Palermo, 1914, 37: 76–112CrossRefGoogle Scholar
  4. 4.
    Bellen A. Preservation of superconvergence in the numerical integration of delay differential equations with proportional delay. IMA J Numer Anal, 2002, 22: 529–536MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bellen A, Brunner H, Maset S, Torelli L. Superconvergence in collocation methods on quasi-graded meshes for functional differential equations with vanishing delays. BIT, 2006, 46: 229–247MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bellen A, Guglielmi N, Torelli L. Asymptotic stability properties of θ-methods for the pantograph equation. Appl Numer Math, 1997, 24: 275–293MathSciNetGoogle Scholar
  7. 7.
    Bellen A, Zennaro M. Numerical Methods for Delay Differential Equations. Oxford: Oxford University Press, 2003MATHCrossRefGoogle Scholar
  8. 8.
    Brunner H. On the discretization of differential and Volterra integral equations with variable delay. BIT, 1997, 37: 1–12MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Brunner H. The numerical analysis of functional integral and integro-differential equations of Volterra type. Acta Numerica, 2004, 55–145Google Scholar
  10. 10.
    Brunner H. Collocation Methods for Volterra Integral and Related Functional Equations. Cambridge Monographs on Applied and Computational Mathematics, Vol 15. Cambridge: Cambridge University Press, 2004Google Scholar
  11. 11.
    Brunner H. Recent advances in the numerical analysis of Volterra functional differential equations with variable delays. J Comput Appl Math, 2008 (in press)Google Scholar
  12. 12.
    Brunner H. On the regularity of solutions for Volterra functional equations with weakly singular kernels and vanishing delays (to appear)Google Scholar
  13. 13.
    Brunner H. Collocation methods for pantograph-type Volterra functional equations with multiple delays. Comput Methods Appl Math, 2008 (in press)Google Scholar
  14. 14.
    Brunner H, Hu Q -Y. Superconvergence of iterated collocation solutions for Volterra integral equations with variable delays. SIAM J Numer Anal, 2005, 43: 1934–1949MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Brunner H, Hu Q -Y. Optimal superconvergence results for delay integro-differential equations of pantograph type. SIAM J Numer Anal, 2007, 45: 986–1004MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Brunner H, Maset S. Time transformations for delay differential equations. Discrete Contin Dyn Syst (in press)Google Scholar
  17. 17.
    Brunner H, Maset S. Time transformations for state-dependent delay differential equations. Preprint, 2008Google Scholar
  18. 18.
    Brunner H, Pedas A, Vainikko G. The piecewise polynomial collocation method for nonlinear weakly singular Volterra equations. Math Comp, 1999, 68: 1079–1095MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Brunner H, Pedas A, Vainikko G. Piecewise polynomial collocation methods for linear Volterra integro-differential equations with weakly singular kernels. SIAM J Numer Anal, 2001, 39: 957–982MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Buhmann M D, Iserles A. Numerical analysis of functional equations with a variable delay. In: Griffiths D F, Watson G A, eds. Numerical Analysis (Dundee 1991). Pitman Res Notes Math Ser, 260. Harlow: Longman Scientific & Technical, 1992, 17–33Google Scholar
  21. 21.
    Buhmann M D, Iserles A. On the dynamics of a discretized neutral equation. IMA J Numer Anal, 1992, 12: 339–363MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Buhmann M D, Iserles A. Stability of the discretized pantograph differential equation. Math Comp, 1993, 60: 575–589MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Buhmann M, Iserles A, Nørsett S P. Runge-Kutta methods for neutral differential equations. In: Agarwal R P, ed. Contributions in Numerical Mathematics (Singapore 1993). River Edge: World Scientific Publ, 1993, 85–98Google Scholar
  24. 24.
    Carvalho L A V, Cooke K L. Collapsible backward continuation and numerical approximations in a functional differential equation. J Differential Equations, 1998, 143: 96–109MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Li G Chambers. Some properties of the functional equation φ(x) = ƒ(x)+ 0λx g(x, y, φ(y))dy. Internat J Math Math Sci, 1990, 14: 27–44Google Scholar
  26. 26.
    Denisov A M, Korovin S V. On Volterra’s integral equation of the first kind. Moscow Univ Comput Math Cybernet, 1992, 3: 19–24MathSciNetGoogle Scholar
  27. 27.
    Denisov A M, Lorenzi A. On a special Volterra integral equation of the first kind. Boll Un Mat Ital B (7), 1995, 9: 443–457MATHMathSciNetGoogle Scholar
  28. 28.
    Denisov A M, Lorenzi A. Existence results and regularization techniques for severely ill-posed integrofunctional equations. Boll Un Mat Ital B (7), 1997, 11: 713–732MATHMathSciNetGoogle Scholar
  29. 29.
    Feldstein A, Iserles A, Levin D. Embedding of delay equations into an infinitedimensional ODE system. J Differential Equations, 1995, 117: 127–150MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Feldstein A, Liu Y K. On neutral functional-differential equations with variable time delays. Math Proc Cambridge Phil Soc, 1998, 124: 371–384MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Fox L, Mayers D F, Ockendon J R, Tayler A B. On a functional differential equation. J Inst Math Appl, 1971, 8: 271–307MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Frederickson P O. Dirichlet solutions for certain functional differential equations. In: Urabe M, ed. Japan-United States Seminar on Ordinary Differential and Functional Equations (Kyoto 1971). Lecture Notes in Math, Vol 243. Berlin-Heidelberg: Springer-Verlag, 1971, 249–251CrossRefGoogle Scholar
  33. 33.
    Frederickson P O. Global solutions to certain nonlinear functional differential equations. J Math Anal Appl, 1971, 33: 355–358MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Gan S Q. Exact and discretized dissipativity of the pantograph equation. J Comput Math, 2007, 25: 81–88MATHMathSciNetGoogle Scholar
  35. 35.
    Guglielmi N. Short proofs and a counterexample for analytical and numerical stability of delay equations with infinite memory. IMA J Numer Anal, 2006, 26: 60–77MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Guglielmi N, Zennaro M. Stability of one-leg θ-methods for the variable coefficient pantograph equation on the quasi-geometric mesh. IMA J Numer Anal, 2003, 23: 421–438MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Huang C M, Vandewalle S. Discretized stability and error growth of the nonautonomous pantograph equation. SIAM J Numer Anal, 2005, 42: 2020–2042MATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Iserles A. On the generalized pantograph functional differential equation. Europ J Appl Math, 1993, 4: 1–38MATHMathSciNetGoogle Scholar
  39. 39.
    Iserles A. Numerical analysis of delay differential equations with variable delays. Ann Numer Math, 1994, 1: 133–152MATHMathSciNetGoogle Scholar
  40. 40.
    Iserles A. On nonlinear delay-differential equations. Trans Amer Math Soc, 1994, 344: 441–477MATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Iserles A. Beyond the classical theory of computational ordinary differential equations. In: Duff I S, Watson G A, eds. The State of the Art in Numerical Analysis (York 1996). Oxford: Clarendon Press, 1997, 171–192Google Scholar
  42. 42.
    Iserles A, Liu Y K. On pantograph integro-differential equations. J Integral Equations Appl, 1994, 6: 213–237MATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Iserles A, Terjéki J. Stability and asymptotic stability of functional-differential equations. J London Math Soc (2), 1995, 51: 559–572MATHMathSciNetGoogle Scholar
  44. 44.
    Ishiwata E. On the attainable order of collocation methods for the neutral functionaldifferential equations with proportional delays. Computing, 2000, 64: 207–222MATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Ishiwata E, Muroya Y. Rational approximation method for delay differential equations with proportional delay. Appl Math Comput, 2007, 187: 741–747MATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Jackiewicz Z. Asymptotic stability analysis of θ-methods for functional differential equations. Numer Math, 1984, 43: 389–396MATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    Kato T, McLeod J B. The functional-differential equation y′(x) = ayx) + by(x). Bull Amer Math Soc, 1971, 77: 891–937MATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Koto T. Stability of Runge-Kutta methods for the generalized pantograph equation. Numer Math, 1999, 84: 233–247MATHCrossRefMathSciNetGoogle Scholar
  49. 49.
    Lalesco T. Sur l’équation de Volterra. J de Math (6), 1908, 4: 309–317Google Scholar
  50. 50.
    Lalesco T. Sur une équation intégrale du type Volterra. C R Acad Sci Paris, 1911, 152: 579–580MATHGoogle Scholar
  51. 51.
    Li D, Liu M Z. Asymptotic stability of numerical solution of pantograph delay differential equations. J Harbin Inst Tech, 1999, 31: 57–59 (in Chinese)MATHMathSciNetGoogle Scholar
  52. 52.
    Li D, Liu M Z. The properties of exact solution of multi-pantograph delay differential equation. J Harbin Inst Tech, 2000, 32: 1–3 (in Chinese)MathSciNetGoogle Scholar
  53. 53.
    Liang J, Liu M Z. Stability of numerical solutions to pantograph delay systems. J Harbin Inst Tech, 1996, 28: 21–26 (in Chinese)MATHMathSciNetGoogle Scholar
  54. 54.
    Liang J, Liu M Z. Numerical stability of θ-methods for pantograph delay differential equations. J Numer Methods Comput Appl, 1996, 12: 271–278 (in Chinese)CrossRefMathSciNetGoogle Scholar
  55. 55.
    Liang J, Qiu S, Liu M Z. The stability of θ-methods for pantograph delay differential equations. Numer Math J Chinese Univ (Engl Ser), 1996, 5: 80–85MATHMathSciNetGoogle Scholar
  56. 56.
    Liu M Z, Li D. Properties of analytic solution and numerical solution of multipantograph equation. Appl Math Comput, 2004, 155: 853–871MATHCrossRefMathSciNetGoogle Scholar
  57. 57.
    Liu M Z, Wang Z, Hu G. Asymptotic stability of numerical methods with constant stepsize for pantograph equations. BIT, 2005, 45: 743–759MATHCrossRefMathSciNetGoogle Scholar
  58. 58.
    Liu M Z, Yang Z W, Xu Y. The stability of modified Runge-Kutta methods for the pantograph equation. Math Comp, 2006, 75: 1201–1215MATHCrossRefMathSciNetGoogle Scholar
  59. 59.
    Liu Y K. Stability analysis of θ-methods for neutral functional-differential equations. Numer Math, 1995, 70: 473–485MATHCrossRefMathSciNetGoogle Scholar
  60. 60.
    Liu Y K. The linear q-difference equation y(x) = ay(qx) + ƒ(x). Appl Math Lett, 1995, 8: 15–18MATHCrossRefGoogle Scholar
  61. 61.
    Liu Y K. On θ-methods for delay differential equations with infinite lag. J Comput Appl Math, 1996, 71: 177–190MATHCrossRefMathSciNetGoogle Scholar
  62. 62.
    Liu Y K. Asymptotic behaviour of functional-differential equations with proportional time delays. Europ J Appl Math, 1996, 7: 11–30MATHGoogle Scholar
  63. 63.
    Liu Y K. Numerical investigation of the pantograph equation. Appl Numer Math, 1997, 24: 309–317MATHCrossRefMathSciNetGoogle Scholar
  64. 64.
    Ma S F, Yang Z W, Liu M Z. H α-stability of modified Runge-Kutta methods for nonlinear neutral pantograph equations. J Math Anal Appl, 2007, 335: 1128–1142MATHCrossRefMathSciNetGoogle Scholar
  65. 65.
    Morris G R, Feldstein A, Bowen E W. The Phragmén-Lindelöf principle and a class of functional differential equations. In: Weiss L, ed. Ordinary Differential Equations (Washington, DC, 1971). New York: Academic Press, 1972, 513–540Google Scholar
  66. 66.
    Mureşan V. On a class of Volterra integral equations with deviating argument. Studia Univ Babeş-Bolyai Math, 1999, XLIV: 47–54Google Scholar
  67. 67.
    Muroya Y, Ishiwata E, Brunner H. On the attainable order of collocation methods for pantograph integro-differential equations. J Comput Appl Math, 2003, 152: 347–366MATHCrossRefMathSciNetGoogle Scholar
  68. 68.
    Ockendon J R, Tayler A B. The dynamics of a current collection system for an electric locomotive. Proc Roy Soc London Ser A, 1971, 322: 447–468CrossRefGoogle Scholar
  69. 69.
    Pukhnacheva T P. A functional equation with contracting argument. Siberian Math J, 1990, 31: 365–367MATHCrossRefMathSciNetGoogle Scholar
  70. 70.
    Qiu L, Mitsui T, Kuang J X. The numerical stability of the θ-method for delay differential equations with many variable delays. J Comput Math, 1999, 17: 523–532MATHMathSciNetGoogle Scholar
  71. 71.
    Si J G, Cheng S S. Analytic solutions of a functional differential equation with proportional delays. Bull Korean Math Soc, 2002, 39: 225–236MATHMathSciNetGoogle Scholar
  72. 72.
    Takama N, Muroya Y, Ishiwata E. On the attainable order of collocation methods for the delay differential equations with proportional delay. BIT, 2000, 40: 374–394MATHCrossRefMathSciNetGoogle Scholar
  73. 73.
    Terjéki J. Representation of the solutions to linear pantograph equations. Acta Sci Math (Szeged), 1995, 60: 705–713MATHMathSciNetGoogle Scholar
  74. 74.
    Volterra V. Sopra alcune questioni di inversione di integrali definite. Ann Mat Pura Appl, 1897, 25: 139–178CrossRefGoogle Scholar
  75. 75.
    Volterra V. Leçcons sur les équations intégrales. Paris: Gauthier-Villars, 1913 (VFIEs with proportional delays as limits of integration are treated on pp. 92–101)Google Scholar
  76. 76.
    Xu Y, Zhao J, Liu M. H-stability of Runge-Kutta methods with variable stepsize for systems of pantograph equations. J Comput Math, 2004, 22: 727–734MATHMathSciNetGoogle Scholar
  77. 77.
    Yu Y, Li S. Stability analysis of Runge-Kutta methods for nonlinear systems of pantograph equations. J Comput Math, 2005, 23: 351–356MATHMathSciNetGoogle Scholar
  78. 78.
    Zhang C, Sun G. The discrete dynamics of nonlinear infinite-delay differential equations. Appl Math Lett, 2002, 15: 521–526MATHCrossRefMathSciNetGoogle Scholar
  79. 79.
    Zhang C, Sun G. Boundedness and asymptotic stability of multistep methods for pantograph equations. J Comput Math, 2004, 22: 447–456MATHMathSciNetGoogle Scholar
  80. 80.
    Zhao J J, Cao W R, Liu M Z. Asymptotic stability of Runge-Kutta methods for the pantograph equations. J Comput Math, 2004, 22: 523–534MATHMathSciNetGoogle Scholar
  81. 81.
    Zhao J J, Xu Y, Qiao Y. The attainable order of the collocation method for double-pantograph delay differential equation. Numer Math J Chinese Univ, 2005, 27: 297–308 (in Chinese)MATHMathSciNetGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsMemorial University of NewfoundlandSt. John’sCanada
  2. 2.Department of MathematicsHong Kong Baptist UniversityHong KongChina

Personalised recommendations