Brief review: frontiers in the computational studies of gene regulations

Review Article


Computational methods have greatly expanded our understanding of complex gene regulations in a systematic view. The rapid progress in molecular biology and highthroughput bio-techniques is providing new opportunities and challenges for the computational analysis of gene regulations.

Key words

computational biology bioinformatics gene regulations regulatory networks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lewin B. Gene VIII. New Jersey: Prentice Hall, 2004Google Scholar
  2. 2.
    Cliften P, Sudarsanam P, Desikan A, et al. Finding functional features in Saccharomyces genomes by phylogenetic footprinting. Science, 2003, 301(5629): 71–76CrossRefGoogle Scholar
  3. 3.
    Harbison C T, Gordon D B, Lee T I, et al. Transcriptional regulatory code of a eukaryotic genome. Nature, 2004, 431(7004): 99–104CrossRefGoogle Scholar
  4. 4.
    Lee I, Date S V, Adai A T, et al. A probabilistic functional network of yeast genes. Science, 2004, 306(5701): 1555–1558CrossRefGoogle Scholar
  5. 5.
    Black D L. Mechanisms of alternative pre-messenger RNA splicing. Annual Review of Biochemistry, 2003, 72: 291–336CrossRefGoogle Scholar
  6. 6.
    Blencowe B J. Alternative splicing: new insights from global analyses. Cell, 2006, 126(1): 37–47CrossRefGoogle Scholar
  7. 7.
    Lopez A J. Alternative splicing of pre-mRNA: developmental consequences and mechanisms of regulation. Annual Review Genetics, 1998, 32: 279–305CrossRefGoogle Scholar
  8. 8.
    Ambros V. The functions of animal microRNAs. Nature, 2004, 431(7006): 350–355CrossRefGoogle Scholar
  9. 9.
    Bartel D P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2): 281–297CrossRefGoogle Scholar
  10. 10.
    Baulcombe D. RNA silencing in plants. Nature, 2004, 431(7006): 356–363CrossRefGoogle Scholar
  11. 11.
    Kim V N, Nam J W. Genomics of microRNA. Trends in Genetics, 2006, 22(3): 165–173CrossRefMathSciNetGoogle Scholar
  12. 12.
    Pennisi E. Human genome. Reaching their goal early, sequencing labs celebrate. Science, 2003, 300(5618): 409CrossRefGoogle Scholar
  13. 13.
    Brenner S, Johnson M, Bridgham J, et al. Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nature Biotechnology, 2000, 18(6): 630–634CrossRefGoogle Scholar
  14. 14.
    Brenner S, Williams S R, Vermaas E H, et al. In vitro cloning of complex mixtures of DNA on microbeads: physical separation of differentially expressed cDNAs. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(4): 1665–1670CrossRefGoogle Scholar
  15. 15.
    Margulies M, Egholm M, Altman WE, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature, 2005, 437(7057): 376–380Google Scholar
  16. 16.
    Ng P, Tan J J, Ooi H S, et al. Multiplex sequencing of pairedend ditags (MS-PET): a strategy for the ultra-high-throughput analysis of transcriptomes and genomes. Nucleic Acids Research, 2006, 34(12): e84CrossRefGoogle Scholar
  17. 17.
    Biemar F, Nix D A, Piel J, et al. Comprehensive identification of Drosophila dorsal-ventral patterning genes using a wholegenome tiling array. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(34): 12763–12768CrossRefGoogle Scholar
  18. 18.
    Biemar F, Zinzen R, Ronshaugen M, et al. Spatial regulation of microRNA gene expression in the Drosophila embryo. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(44): 15907–15911CrossRefGoogle Scholar
  19. 19.
    Cheng J, Kapranov P, Drenkow J, et al. Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science, 2005, 308(5725): 1149–1154CrossRefGoogle Scholar
  20. 20.
    Manak J R, Dike S, Sementchenko V, et al. Biological function of unannotated transcription during the early development of Drosophila melanogaster. Nature Genetics, 2006, 38(10): 1151–1158CrossRefGoogle Scholar
  21. 21.
    Gerber A P, Luschnig S, Krasnow M A, et al. Genome-wide identification of mRNAs associated with the translational regulator PUMILIO in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(12): 4487–4492CrossRefGoogle Scholar
  22. 22.
    Iyer V R, Horak C E, Scafe C S, et al. Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature, 2001, 409(6819): 533–538CrossRefGoogle Scholar
  23. 23.
    Lieb JD, Liu X, Botstein D, et al. Promoter-specific binding of rap1 revealed by genome-wide maps of protein-DNA association. Nature Genetics, 2001, 28(4): 327–334CrossRefGoogle Scholar
  24. 24.
    Ren B, Robert F, Wyrick J J, et al. Genome-wide location and function of DNA binding proteins. Science, 2000, 290(5500): 2306–2309CrossRefGoogle Scholar
  25. 25.
    Schwikowski B, Uetz P, Fields S. A network of protein-protein interactions in yeast. Nature Biotechnology, 2000, 18(12): 1257–1261CrossRefGoogle Scholar
  26. 26.
    Holland H J. Adaptation in Natural and Artificial Systems. Cambridge: The MIT Press, 1992Google Scholar
  27. 27.
    Rollins R A, Haghighi F, Edwards J R, et al. Large-scale structure of genomic methylation patterns. Genome Research, 2006, 16(2): 157–163CrossRefGoogle Scholar
  28. 28.
    Amoreira C, Hindermann W, Grunau C. An improved version of the DNA methylation database (MethDB). Nucleic Acids Research, 2003, 31(1): 75–77CrossRefGoogle Scholar
  29. 29.
    Grunau C, Renault E, Roizes G. DNA methylation database “MethDB”: a user guide. Journal of Nutrition, 2002, 132(8 Suppl): 2435S–2439SGoogle Scholar
  30. 30.
    Grunau C, Renault E, Rosenthal A, et al. MethDB-a public database for DNA methylation data. Nucleic Acids Research, 2001, 29(1): 270–274CrossRefGoogle Scholar
  31. 31.
    Bhasin M, Zhang H, Reinherz E L, et al. Prediction of methylated CpGs in DNA sequences using a support vector machine. FEBS Letters, 2005, 579(20): 4302–4308CrossRefGoogle Scholar
  32. 32.
    Fang F, Fan S, Zhang X, et al. Predicting methylation status of CpG islands in the human brain. Bioinformatics, 2006, 22(18): 2204–2209CrossRefGoogle Scholar
  33. 33.
    Das R, Dimitrova N, Xuan Z, et al. Computational prediction of methylation status in human genomic sequences. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(28): 10713–10716CrossRefGoogle Scholar
  34. 34.
    Bock C, Paulsen M, Tierling S, et al. CpG island methylation in human lymphocytes is highly correlated with DNA sequence, repeats, and predicted DNA structure. PLoS Genetics, 2006, 2(3): e26CrossRefGoogle Scholar
  35. 35.
    Hung J H, Wang W C, Huang H D. Systematic identification and repository of RNA editing site in human genome. International Computer Symposium, 2006, 1386–1391Google Scholar
  36. 36.
    He T, Du P, Li Y. dbRES: a web-oriented database for annotated RNA editing sites. Nucleic Acids Research, 2007, 35(Database issue): D141–144CrossRefGoogle Scholar
  37. 37.
    Picardi E, Regina T M, Brennicke A, et al. REDIdb: the RNA editing database. Nucleic Acids Research, 2007, 35(Database issue): D173–177CrossRefGoogle Scholar
  38. 38.
    Cummings M P, Myers D S. Simple statistical models predict C-to-U edited sites in plant mitochondrial RNA. BMC Bioinformatics, 2004, 5: 132CrossRefGoogle Scholar
  39. 39.
    Mower J P. PREP-Mt: predictive RNA editor for plant mitochondrial genes. BMC Bioinformatics, 2005, 6: 96CrossRefGoogle Scholar
  40. 40.
    Thompson J, Gopal S. Correction: genetic algorithm learning as a robust approach to RNA editing site site prediction. BMC Bioinformatics, 2006, 7: 406CrossRefGoogle Scholar
  41. 41.
    Thompson J, Gopal S. Genetic algorithm learning as a robust approach to RNA editing site prediction. BMC Bioinformatics, 2006, 7: 145CrossRefGoogle Scholar
  42. 42.
    Du P, He T, Li Y. Prediction of C-to-U RNA editing sites in higher plant mitochondria using only nucleotide sequence features. Biochemical and Biophysical Research Communications, 2007, 358(1): 336–341CrossRefGoogle Scholar
  43. 43.
    Athanasiadis A, Rich A, Maas S. Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome. PLoS Biology, 2004, 2(12): e391CrossRefGoogle Scholar
  44. 44.
    Stamm S, Riethoven J J, Le Texier V, et al. ASD: a bioinformatics resource on alternative splicing. Nucleic Acids Research, 2006, 34(Database issue): D46–55CrossRefGoogle Scholar
  45. 45.
    Thanaraj T A, Stamm S, Clark F, et al. ASD: the Alternative Splicing Database. Nucleic Acids Research, 2004, 32(Database issue): D64–69CrossRefGoogle Scholar
  46. 46.
    Ohler U, Shomron N, Burge C B. Recognition of unknown conserved alternatively spliced exons. PLoS Computational Biology, 2005, 1(2): 113–122CrossRefGoogle Scholar
  47. 47.
    Wang M, Marin A. Characterization and prediction of alternative splice sites. Gene, 2006, 366(2): 219–227CrossRefGoogle Scholar
  48. 48.
    Xia H, Bi J, Li Y. Identification of alternative 59/39 splice sites based on the mechanism of splice site competition. Nucleic Acids Research, 2006, 34(21): 6305–6313CrossRefGoogle Scholar
  49. 49.
    Griffiths-Jones S. miRBase: the microRNA sequence database. Methods in Molecular Biology, 2006, 342: 129–138Google Scholar
  50. 50.
    Griffiths-Jones S, Grocock R J, Van Dongen S, et al. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Research, 2006, 34(Database issue): D140–144CrossRefGoogle Scholar
  51. 51.
    Sethupathy P, Corda B, Hatzigeorgiou A G. TarBase: A comprehensive database of experimentally supported animal microRNA targets. RNA, 2006, 12(2): 192–197CrossRefGoogle Scholar
  52. 52.
    Berezikov E, Cuppen E, Plasterk R H. Approaches to microRNA discovery. Nature Genetics, 2006, 38(Suppl): S2–7CrossRefGoogle Scholar
  53. 53.
    Rajewsky N. MicroRNA target predictions in animals. Nature Genetics, 2006, 38(Suppl): S8–13CrossRefGoogle Scholar
  54. 54.
    Sethupathy P, Megraw M, Hatzigeorgiou A G. A guide through present computational approaches for the identification of mammalian microRNA targets. Nature Methods, 2006, 3(11): 881–886CrossRefGoogle Scholar
  55. 55.
    Bussemaker H J, Foat B C, Ward L D. Predictive modeling of genome-wide mRNA expression: from modules to molecules. Annual Review of Biophysics and Biomolecular Structure, 2007, 36: 329–347CrossRefGoogle Scholar
  56. 56.
    Grundy W N, Bailey T L, Elkan C P. ParaMEME: a parallel implementation and a web interface for a DNA and protein motif discovery tool. Computer Applications in Bioscience, 1996, 12(4): 303–310Google Scholar
  57. 57.
    Grundy W N, Bailey T L, Elkan C P, et al. Meta-MEME: motif-based hidden Markov models of protein families. Computer Applications in Bioscience, 1997, 13(4): 397–406Google Scholar
  58. 58.
    Liu X S, Brutlag D L, Liu J S. An algorithm for finding protein-DNA binding sites with applications to chromatin-immunoprecipitation microarray experiments. Nature Biotechnology, 2002, 20(8): 835–839Google Scholar
  59. 59.
    Schones D E, Smith A D, Zhang M Q. Statistical significance of cis-regulatory modules. BMC Bioinformatics, 2007, 8: 19CrossRefGoogle Scholar
  60. 60.
    Xie X, Lu J, Kulbokas E J, et al. Systematic discovery of regulatory motifs in human promoters and 39UTRs by comparison of several mammals. Nature, 2005, 434(7031): 338–345CrossRefGoogle Scholar
  61. 61.
    Gu J, Fu H. The pairwise conservation scores — an algorithm to identify conserved K-mers.,gujin/pcs/, 2007
  62. 62.
    Roven C, Bussemaker H J. REDUCE: An online tool for inferring cis-regulatory elements and transcriptional module activities from microarray data. Nucleic Acids Research, 2003, 31(13): 3487–3490CrossRefGoogle Scholar
  63. 63.
    Das D, Banerjee N, Zhang M Q. Interacting models of cooperative gene regulation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(46): 16234–16239CrossRefGoogle Scholar
  64. 64.
    Das D, Nahle Z, Zhang M Q. Adaptively inferring human transcriptional subnetworks. Molecular Systems Biology, 2006, 2: 2006.0029CrossRefGoogle Scholar
  65. 65.
    Keles S, Van der Laan M J, Vulpe C. Regulatory motif finding by logic regression. Bioinformatics, 2004, 20(16): 2799–2811CrossRefGoogle Scholar
  66. 66.
    Zhong W, Zeng P, Ma P, et al. RSIR: regularized sliced inverse regression for motif discovery. Bioinformatics, 2005, 21(22): 4169–4175CrossRefGoogle Scholar
  67. 67.
    Jaqaman K, Danuser G. Linking data to models: data regression. Nature Reviews Molecular Cell Biology, 2006, 7(11): 813–819CrossRefGoogle Scholar
  68. 68.
    Visel A, Minovitsky S, Dubchak I, et al. VISTA Enhancer Browser: a database of tissue-specific human enhancers. Nucleic Acids Research, 2007, 35(Database issue): D88–92CrossRefGoogle Scholar
  69. 69.
    Gallo S M, Li L, Hu Z, et al. REDfly: a regulatory element database for drosophila. Bioinformatics, 2006, 22(3): 381–383CrossRefGoogle Scholar
  70. 70.
    Shalgi R, Lieber D, Oren M, et al. Global and local architecture of the mammalian microRNA-transcription factor regulatory network. PLoS Computational Biology, 2007, 3(7): e131CrossRefGoogle Scholar
  71. 71.
    Tsang J, Zhu J, Van Oudenaarden A. MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Molecular Cell, 2007, 26(5): 753–767CrossRefGoogle Scholar
  72. 72.
    Ruby J G, Jan C H, Bartel D P. Intronic micro-RNA precursors that bypass Drosha processing. Nature, 2007, 448(7149): 83–86CrossRefGoogle Scholar
  73. 73.
    Kim Y K, Kim V N. Processing of intronic microRNAs. EMBO Journal, 2007, 26(3): 775–783CrossRefGoogle Scholar
  74. 74.
    Kawahara Y, Zinshteyn B, Sethupathy P, et al. Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science, 2007, 315(5815): 1137–1140CrossRefGoogle Scholar
  75. 75.
    Vermeirssen V, Barrasa M I, Hidalgo C A, et al. Transcription factor modularity in a gene-centered Celegans core neuronal protein-DNA interaction network. Genome Research, 2007, 17(7): 1061–1071CrossRefGoogle Scholar
  76. 76.
    Deplancke B, Mukhopadhyay A, Ao W, et al. A gene-centered C. elegans protein-DNA interaction network. Cell, 2006, 125(6): 1193–1205CrossRefGoogle Scholar
  77. 77.
    Davidson E H, Rast J P, Oliveri P, et al. A genomic regulatory network for development. Science, 2002, 295(5560): 1669–1678CrossRefGoogle Scholar
  78. 78.
    Chaves M, Albert R, Sontag E D. Robustness and fragility of Boolean models for genetic regulatory networks. Journal of Theoretical Biology, 2005, 235(3): 431–449CrossRefMathSciNetGoogle Scholar
  79. 79.
    Kitano H. Towards a theory of biological robustness. Molecular Systems Biology, 2007, 3: 137CrossRefGoogle Scholar
  80. 80.
    Albert R, Barabasi A L. Statistical mechanics of complex networks. Reviews of Modern Physics, 2002, 74(1): 47–97CrossRefMathSciNetGoogle Scholar
  81. 81.
    Jeong H, Tombor B, Albert R, et al. The large-scale organization of metabolic networks. Nature, 2000, 407(6804): 651–654CrossRefGoogle Scholar
  82. 82.
    Jeong H, Mason S P, Barabasi A L, et al. Lethality and centrality in protein networks. Nature, 2001, 411(6833): 41–42CrossRefGoogle Scholar
  83. 83.
    Milo R, Shen-Orr S, Itzkovitz S, et al. Network motifs: simple building blocks of complex networks. Science, 2002, 298(5594): 824–827CrossRefGoogle Scholar
  84. 84.
    Shen-Orr S S, Milo R, Mangan S, et al. Network motifs in the transcriptional regulation network of Escherichia coli. Nature Genetics, 2002, 31(1): 64–68CrossRefGoogle Scholar
  85. 85.
    Haykin S. Neural Networks: A Comprehensive Foundation. (2nd edition). New Jersey: Prentice Hall, 1998Google Scholar
  86. 86.
    Prill R J, Iglesias P A, Levchenko A. Dynamic properties of network motifs contribution to biological network organization. PLoS Biology, 2005, 3(11): e343CrossRefGoogle Scholar
  87. 87.
    Kitano H. Biological robustness. Nature Review of Genetics, 2004, 5(11): 826–837CrossRefGoogle Scholar
  88. 88.
    Kitano H. The theory of biological robustness and its implication in cancer. Ernst Schering Research Foundation Workshop, 2007, 61: 69–88CrossRefGoogle Scholar
  89. 89.
    Kitano H. Biological robustness in complex host-pathogen systems. Progress in Drug Research, 2007, 64(239): 241–263Google Scholar
  90. 90.
    Kitano H. Systems biology: a brief overview. Science, 2002, 295(5560): 1662–1664CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH 2008

Authors and Affiliations

  1. 1.MOE Key Laboratory of Bioinformatics and Bioinformatics Div, TNLIST / Department of AutomationTsinghua UniversityBeijingChina

Personalised recommendations