Selection of Embedding Dimension and Delay Time in Phase Space Reconstruction

Research Article


A new algorithm is proposed for computing the embedding dimension and delay time in phase space reconstruction. It makes use of the zero of the nonbias multiple autocorrelation function of the chaotic time series to determine the time delay, which efficiently depresses the computing error caused by tracing arbitrarily the slop variation of average displacement (AD) in AD algorithm. Thereafter, by means of the iterative algorithm of multiple autocorrelation and Γ test, the near-optimum parameters of embedding dimension and delay time are estimated. This algorithm is provided with a sound theoretic basis, and its computing complexity is relatively lower and not strongly dependent on the data length. The simulated experimental results indicate that the relative error of the correlation dimension of standard chaotic time series is decreased from 4.4% when using conventional algorithm to 1.06% when using this algorithm. The accuracy of invariants in phase space reconstruction is greatly improved.


phase space reconstruction embedding dimension delay time multiple autocorrelation Γ test 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Packard N. H., Crutchfield J. P. Farmer J. D. and Shaw R. S., Geometry from a time series, Phys. Rev. Lett., 1980, 45: 712–716CrossRefGoogle Scholar
  2. 2.
    Takens F., Detecting strange attractor in turbulence, Lect. Notes Math., 1981, 898: 361–381MathSciNetGoogle Scholar
  3. 3.
    Albano, A. M. et al, SVD and Grassberger-Procaccia algorithm, Phys. Rev. A, 1988, 38(6): 3017–3026CrossRefMathSciNetGoogle Scholar
  4. 4.
    Fraser A. M., Information and entropy in strange attractors[J]. IEEE Trans. Inf. Theory, Mar. 1989, 35(2): 245–262CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Albano A. M. et al, Using high-order correlations to define an embedding window, Physica D, 1991, 54(1–2): 85–97MATHMathSciNetGoogle Scholar
  6. 6.
    Pfister Buzug T., Optimal delay time and embedding dimension for delay-time coordinates by analysis of the global static and local dynamical behaviour of strange attractors, Phys. Rev. A, 1992, 45(10): 7073–7084Google Scholar
  7. 7.
    Pfister Buzug T., Comparison of algorithms calculating optimal embedding parameters for delay time coordinates, Physica D, 1992, 58(1–4): 127–137Google Scholar
  8. 8.
    Rossenstein M. T., Colins J. J. and de Luca C. J., Reconstruction expansion as a geometry-based framework for choosing proper delay times, Physica D, 1994, 73(1): 82–98MathSciNetGoogle Scholar
  9. 9.
    Kembe G. and Fowler A. C., A correlation function for choosing time delays in phase portrait reconstructions, Phys. Lett. A, 1993, 179(2): 72–80MathSciNetGoogle Scholar
  10. 10.
    Lin J., Wang Y., Huang Z. and Shen Z., Selection of proper time-delay in phase space reconstruction of speech signals, Signal Process., 1999, 15(2): 220–225Google Scholar
  11. 11.
    Kugiumtzis D., State space reconstruction parameters in the analysis of chaotic time series—the role of the time window length, Physica D, 1996, 95(1): 13–28CrossRefMATHGoogle Scholar
  12. 12.
    Kim H. S., Eykholt R. and Salas J. D., Nonlinear dynamics, delay times, and embedding windows, Physica D, 1999, 127(1): 48–60CrossRefGoogle Scholar
  13. 13.
    Otani M. and Jones A., Automated Embedding and Creep Phenomenon in Chaotic Time Series [EB/OL],, 2000
  14. 14.
    Stefansson A., Koncar N. and Jones A. J., A note on the gamma test, Neural Comput. Appl., 1997, 5(1): 131–133Google Scholar
  15. 15.
    Kugiumtzis D., Lillekjendlie B. and Christophersen N., Chaotic time series part I: estimation of some invariant properties in state space, Model. Identif. Control, 1994, 15(4): 205–224MathSciNetGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag 2006

Authors and Affiliations

  1. 1.Research Institute of High TechnologyXi’anChina

Personalised recommendations