Advertisement

Dynamic lattice searching methods for optimization of clusters

  • Xueguang Shao
  • Xia Wu
  • Wensheng Cai
Feature Article

Abstract

Global optimization of clusters is a subject of intense interest in computational chemistry. Especially for large clusters, locating the global minima is a challenging problem. Two strategies are generally used for the problem, i.e., the stochastic optimization and the static modeling strategy. The former is known as unbiased global optimization method, while the latter is more efficient but biased. This review describes the development of a dynamic lattice searching (DLS) approach. In DLS, the lattices are constructed dynamically and optimization is achieved by searching these lattices. Therefore, DLS possesses the characteristics of both the stochastic and static methods. With the aim of improving the efficiency of DLS for optimization of large clusters, several variants of the method have been developed. The results show that DLS methods may be promising tools for fast modeling of large clusters. With this review, greater interests are expected for global optimization of atomic or molecular clusters.

Keywords

global optimization structural optimization modeling clusters dynamic lattice 

References

  1. 1.
    Castleman, A. W. Jr.; Keesee, R. G., Science 1988, 241, 36CrossRefGoogle Scholar
  2. 2.
    Estela, B. B.; Khanna, S. N., Phys. Rev. Lett. 1988, 61, 1477CrossRefGoogle Scholar
  3. 3.
    Tersoff, J., Phys. Rev. B 1988, 37, 6991CrossRefGoogle Scholar
  4. 4.
    Bolding, B. C.; Andersen, H. C., Phys. Rev. B 1990, 41, 10568CrossRefGoogle Scholar
  5. 5.
    Lee, J.; Lee, I. H.; Lee J., Phys. Rev. Lett. 2003, 91, 080201CrossRefGoogle Scholar
  6. 6.
    Leary, R. H.; Doye, J. P. K., Phys. Rev. E 1999, 60, 6320CrossRefGoogle Scholar
  7. 7.
    Wales, D. J.; Scheraga, H. A., Science 1999, 285, 1368CrossRefGoogle Scholar
  8. 8.
    Deaven, D. M.; Ho, K. M., Phys. Rev. Lett. 1995, 75, 288CrossRefGoogle Scholar
  9. 9.
    Hartke, B., J. Comput. Chem. 1999, 20, 1752CrossRefGoogle Scholar
  10. 10.
    Johnston, R. L., Dalton Trans. 2003, 22, 4193CrossRefGoogle Scholar
  11. 11.
    Li, Z.; Scheraga, H. A., Proc. Natl. Acad. Sci. U. S. A. 1987, 84, 6611CrossRefGoogle Scholar
  12. 12.
    Wales, D. J.; Doye, J. P. K., J. Phys. Chem. A 1997, 101, 5111CrossRefGoogle Scholar
  13. 13.
    Leary, R. H., J. Global. Optim. 2000, 18, 367CrossRefGoogle Scholar
  14. 14.
    Goedecker, S., J. Chem. Phys. 2004, 120, 9911CrossRefGoogle Scholar
  15. 15.
    Bao, K.; Goedecker, S.; Koga, K.; Lancon, F.; Neelov A., Phys. Rev. B 2009, 79, 041405CrossRefGoogle Scholar
  16. 16.
    Cheng, L. J.; Feng, Y.; Yang, J.; Yang J. L., J. Chem. Phys. 2009, 130, 214112CrossRefGoogle Scholar
  17. 17.
    Kirkpatrick, S.; Gelatt, Jr C. D.; Vecchi, M. P., Science 1983, 220, 671CrossRefGoogle Scholar
  18. 18.
    Krivov, S. V., Phys. Rev. E 2002, 66, 025701CrossRefGoogle Scholar
  19. 19.
    Takeuchi, H., J. Chem. Inf. Model. 2006, 46, 2066CrossRefGoogle Scholar
  20. 20.
    Pappu, R. V.; Hart, R. K.; Ponder, J. W., J. Phys. Chem. B 1998, 102, 9725CrossRefGoogle Scholar
  21. 21.
    Ma, J.; Straub, J. E., J. Chem. Phys. 1994, 101, 533CrossRefGoogle Scholar
  22. 22.
    Xue, G. L., J. Global Optim. 1994, 4, 187CrossRefGoogle Scholar
  23. 23.
    Deaven, D. M.; Tit, N.; Morris, J. R.; Ho, K. M., Chem. Phys. Lett. 1996, 256, 195CrossRefGoogle Scholar
  24. 24.
    Pullan, W., J. Comput. Chem. 2005, 26, 899CrossRefGoogle Scholar
  25. 25.
    While, R. P.; Mayne, H. R., Chem. Phys. Lett. 1998, 289, 463CrossRefGoogle Scholar
  26. 26.
    Cai, W. S.; Shao, X. G., J. Comput. Chem. 2002, 23, 427CrossRefGoogle Scholar
  27. 27.
    Cai, W. S.; Jiang, H. Y.; Shao, X. G., J. Chem. Inf. Comp. Sci. 2002, 42, 1099Google Scholar
  28. 28.
    Shao, X. G.; Cheng, L. J.; Cai, W. S., J. Chem. Phys. 2004, 120, 11401CrossRefGoogle Scholar
  29. 29.
    Wu, X.; Cai, W. S.; Shao, X. G., J. Comput. Chem. 2009, 30, 1992CrossRefGoogle Scholar
  30. 30.
    Jiang, H. Y.; Cai, W. S.; Shao, X. G., Phys. Chem. Chem. Phys. 2002, 4, 4782CrossRefGoogle Scholar
  31. 31.
    Shao, X. G.; Jiang, H. Y.; Cai, W. S., J. Chem. Inf. Comput. Sci. 2004, 44, 193Google Scholar
  32. 32.
    Northby, J. A.; J. Chem. Phys. 1987, 87, 6166CrossRefGoogle Scholar
  33. 33.
    Romero, D.; Barron, C.; Gomez, S., Comput. Phys. Commun. 1999, 123, 87CrossRefGoogle Scholar
  34. 34.
    Xiang, Y. H.; Jiang, H. Y.; Cai, W. S.; Shao X. G., J. Phys. Chem. A 2004, 108, 3586CrossRefGoogle Scholar
  35. 35.
    Xiang, Y. H.; Cheng, L. J.; Cai, W. S.; Shao, X. G., J. Phys. Chem. A 2004, 108, 9516CrossRefGoogle Scholar
  36. 36.
    Van de Waal, B. W., J. Chem. Phys. 1993, 98, 4909CrossRefGoogle Scholar
  37. 37.
    Cleveland, C. L.; Landman, U., J. Chem. Phys. 1991, 94, 7376CrossRefGoogle Scholar
  38. 38.
    Besley, N. A.; Johnston, R. L.; Stace, A. J.; Uppenbrink, J., J. Mol. Struct.: THEOCHEM 1995, 341, 75CrossRefGoogle Scholar
  39. 39.
    Hearn, J. E.; Johnston, R. L., J. Chem. Phys. 1997, 107, 4674CrossRefGoogle Scholar
  40. 40.
    Shao, X. G.; Cheng, L. J.; Cai, W. S., J. Comput. Chem. 2004, 25, 1693CrossRefGoogle Scholar
  41. 41.
    Yang, X. L.; Cai, W. S.; Shao, X. G., J. Comput. Chem. 2007, 28, 1427CrossRefGoogle Scholar
  42. 42.
    Shao, X. G.; Yang, X. L.; Cai, W. S., J. Comput. Chem. 2008, 29, 1772CrossRefGoogle Scholar
  43. 43.
    Liu, D. C.; Nocedal, J., Math. Program. 1989, 45, 503CrossRefGoogle Scholar
  44. 44.
    Eachus, R. S.; Marchetti, A. P.; Muenter, A. A., Annu. Rev. Phys. Chem. 1999, 50, 117CrossRefGoogle Scholar
  45. 45.
    Kim, S. H.; Medeiros-Ribeiro, G.; Ohlberg, D. A. A.; Stanley-Williams, R.; Heath, J. R., J. Phys. Chem. B 1999, 103, 10341CrossRefGoogle Scholar
  46. 46.
    Zhan, H.; Cheng, L. J.; Cai, W. S.; Shao, X. G., Chem. Phys. Lett. 2006, 422, 358CrossRefGoogle Scholar
  47. 47.
    Shao, X. G.; Liu, X. M.; Cai, W. S., J. Chem. Theo. Comput. 2005, 1, 762CrossRefGoogle Scholar
  48. 48.
    Wales, D. J.; Doye, J. P. K.; Dullweber, A.; Hodges, M. P.; Naumkin, F. Y.; Calvo, F.; Hernández-Rojas, J.; Middleton, T. F., The Cambridge Cluster Database (CCD), available at http://www-wales.ch.cam.ac.uk/CCD.html
  49. 49.
    Cheng, L. J.; Yang, J. L., J. Chem. Phys. 2007, 127, 124104CrossRefGoogle Scholar
  50. 50.
    Hagen, M. H. J.; Meijer, E. J.; Mooij, G. C. A. M.; Frenkel, D.; Lekker-kerker, H. N. W., Nature 1993, 365, 425CrossRefGoogle Scholar
  51. 51.
    Girifalco, L. A., J. Phys. Chem. 1992, 96, 858CrossRefGoogle Scholar
  52. 52.
    Cheng, L. J.; Cai, W. S.; Shao, X. G., Chem. Phys. Chem. 2005, 6, 261Google Scholar
  53. 53.
    Doye, J. P. K.; Miller, M. A.; Wales, D. J., J. Chem. Phys. 1999, 110, 6896CrossRefGoogle Scholar
  54. 54.
    Doye, J. P. K., Phys. Rev. Lett. 2002, 88, 238701CrossRefGoogle Scholar
  55. 55.
    Cheng, L. J.; Cai, W. S.; Shao, X. G., Chem. Phys. Chem. 2007, 8, 569Google Scholar
  56. 56.
    Yang, X. L., Ph. D. dissertation, X. L., Anal. Chem., Univ. Nankai, 2008 (in Chinese)Google Scholar
  57. 57.
    Yang, X. L.; Cai, W. S.; Shao, X. G., J. Phys. Chem. A 2007, 111, 5048CrossRefGoogle Scholar
  58. 58.
    Shao, X. G.; Yang, X. L.; Cai, W. S., Chem. Phys. Lett. 2008, 460, 315CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Research Center for Analytical Sciences, College of ChemistryNankai UniversityTianjinChina

Personalised recommendations