Advertisement

Frontiers of Chemistry in China

, Volume 1, Issue 4, pp 357–363 | Cite as

Progresses in organic field-effect transistors and molecular electronics

  • Wu Weiping 
  • Xu Wei 
  • Hu Wenping 
  • Liu Yunqi Email author
  • Zhu Daoben 
Review Article
  • 50 Downloads

Abstract

In the past years, organic semiconductors have been extensively investigated as electronic materials for organic field-effect transistors (OFETs). In this review, we briefly summarize the current status of organic field-effect transistors including materials design, device physics, molecular electronics and the applications of carbon nanotubes in molecular electronics. Future prospects and investigations required to improve the OFET performance are also involved.

Keywords

organic semiconductors organic field-effect transistors (OFETs) molecular electronics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tsumura A., Koezuka H. and Ando T. Macromolecular electronic device: Field-effect transistor with a polythiophene thin film, Appl. Phys. Lett., 1986, 49(18): 1210–1212CrossRefGoogle Scholar
  2. 2.
    Bao Z. N., Rogers J. A. and Katz H. E. Printable organic and polymeric semiconducting materials and devices, J. Mater. Chem., 1999, 9(9): 1895–1904CrossRefGoogle Scholar
  3. 3.
    Dimitrakopoulos C. D. and Mascaro D. J. Organic thin-film transistors: A review of recent advances, IBM. J. Res. Develop., 2001, 45(1): 11–27CrossRefGoogle Scholar
  4. 4.
    Sze S. M. Semiconductor Devices, Physics, and Technology, John Wiley & Sons: New York, 1985, p 490Google Scholar
  5. 5.
    Kitamura M., Imada T. and Arakawa Y. Organic light-emitting diodes driven by pentacene-based thin-film transistors, Appl. Phys. Lett., 2003, 83(16): 3410–3412CrossRefGoogle Scholar
  6. 6.
    Xiao K., Liu Y., Guo Y., Yu G., Wan L. and Zhu D. Influence of self-assembly monolayers on the characteristics of copper phthalacyanine thin film transistor, Appl. Phys. A., 2005, 80(7): 1541–1545CrossRefGoogle Scholar
  7. 7.
    Katz H. E., Bao Z. N. and Gilat S. L. Synthetic chemistry for ultrapure, processable, and high-mobility organic transistor semiconductors, Acc. Chem. Res., 2001, 34(5): 359–369CrossRefGoogle Scholar
  8. 8.
    Kelley T. W., Boardman L. D., Dunbar T. D., Muyves D. V., Pellerite M. J. and Smith T. P. High-performance OTFTs using surface-modified alumina dielectrics, J. Phys. Chem. B, 2003, 107(24): 5877–5881CrossRefGoogle Scholar
  9. 9.
    Baude P. F., Ender D. A., Haase M. A., Kelley T. W., Muyres D. V. and Theiss S. D. Pentacene-based radio-frequency identification circuitry, Applied Physics Letters, Appl. Phys. Lett., 2003, 82(22): 3964–3966CrossRefGoogle Scholar
  10. 10.
    Gelinck G. H., Huitema H. E., van Veenendaal E., Cantatore E., Schrijnemakers L., van der Putten J. B., Geuns T. C., Beenhakkers M., Giesbers J. B., Huisman B. H., Meijer E. J., Benito E. M., Touwslager F. J., Marsman A. W., van Rens B. J., de Leeuw D. M. Flexible active-matrix displays and shift registers based on solution-processed organic transistors, Nature Materials, 2004, 3(2): 106–110CrossRefGoogle Scholar
  11. 11.
    Torsi L., Dodabalapur A., Katz H. E., Lovinger A. J., Ruel R. Organic thin-film-transistors with high on/off ratios, Mater. Res. Soc. Sym. Proc., 1995, 377, 695–700Google Scholar
  12. 12.
    Sirringhaus H., Friend R. H., Li X. C., Moratti S. C., Holmes A. B. and Feeder N. Bis(dithienothiophene) organic field-effect transistors with a high ON/OFF ratio, Appl. Phys. Lett., 1997, 71(26): 3871–3873CrossRefGoogle Scholar
  13. 13.
    Lin Y. Y., Gundlach D. J. and Jackson T. N. High-mobility pentacene organic thin film transistors, Ann. Device Res. Conf. Digest., 1996, 80–81Google Scholar
  14. 14.
    Abe Y., Hasegawa T., Takahashi Y., Yamada T. and Tokura Y. Control of threshold voltage in pentacene thin-film transistors using carrier doping at the charge-transfer interface with organic acceptors, Appl. Phys. Lett., 2005, 87(15): 153506-1–153506-3CrossRefGoogle Scholar
  15. 15.
    Ling M. M. and Bao Z. N. Thin film deposition, patterning, and printing in organic thin film transistors, Chem. Mater., 2004, 16(23): 4824–4840CrossRefGoogle Scholar
  16. 16.
    Li Y. N., Wu Y. L., Gardner S. and Ong B. S. Novel peripherally substituted indolo[3,2-b]carbazoles for high-mobility organic thin-film transistors, Adv. Mater., 2005, 17(7): 849–853CrossRefGoogle Scholar
  17. 17.
    Merlo J. A., Newman C. R., Gerlach C. P., Kelley T. W., Muyres D. V., Fritz S. E., Toney M. F. and Frisbie C. D. p-Channel organic semiconductors based on hybrid acene-thiophene molecules for thin-film transistor applications, J. Am. Chem. Soc., 2005, 127(11): 3997–4009CrossRefGoogle Scholar
  18. 18.
    Naraso N., Nishida J., Ando S., Yamaguchi J., Itaka K., Koinuma H., Tada H., Tokito S. and Yamashita Y. High-performance organic field-effect transistors based on pi-extended tetrathiafulvalene derivatives, J. Am. Chem. Soc., 2005, 127(29): 10142–10143Google Scholar
  19. 19.
    Haddon R. C., Perel A. S., Morris R. C., Palstra T. T. M., Hebard A. F. and Fleming R. M. C60 thin film transistors, Appl. Phys. Lett., 1995, 67(1): 121–123CrossRefGoogle Scholar
  20. 20.
    Malenfant P. R. L., Dimitrakopoulos C. D., Gelorne J. D., Kosbar L. L., Graham T. O., Curioni A and Andreoni. N-type organic thin-film transistor with high field-effect mobility based on a N,N[sup [prime]]-dialkyl-3,4,9,10-perylene tetracarboxylic diimide derivative, Appl. Phys. Lett., 2002, 80(14): 2517–2519CrossRefGoogle Scholar
  21. 21.
    Ando S., Nishida J. I., Tada H., Inoue Y., Tokito S. and Yamashita Y. High performance n-type organic field-effect transistors based on pi-electronic systems with trifluoromethylphenyl groups, J. Am. Chem. Soc., 2005, 127(15): 5336–5337CrossRefGoogle Scholar
  22. 22.
    Letizia J. A., Facchetti A., Stern C. L., Rantner M. A. and Marks T. J. High electron mobility in solution-cast and vapor-deposited phenacyl-quaterthiophene-based field-effect transistors: Toward n-type polythiophenes, J. Am. Chem. Soc., 2005, 127(39): 13476–13477CrossRefGoogle Scholar
  23. 23.
    Gundlach D. J., Pernstich K. P., Wilckens G., Gruter M., Haas S. and Batlogg B. High mobility n-channel organic thin-film transistors and complementary inverters, J. Appl. Phys., 2005, 98(6): 064502-1–064502-8CrossRefGoogle Scholar
  24. 24.
    Chesterfield R. J., McKeen J. C., Newman C. R., Ewbank P. C., da Silva Filho D. A., Bredas J. L., Miller L. L., Mann K. R., Frisbie C. D. Organic thin film transistors based on N-alkyl perylene diimides: Charge transport kinetics as a function of gate voltage and temperature, J. Phys. Chem. B, 2004, 108(50): 19281–19292CrossRefGoogle Scholar
  25. 25.
    Ando S., Murakami R., Nishida J., Tada H., Inoue Y., Tokito S. and Yamashita Y. n-Type organic field-effect transistors with very high electron mobility based on thiazole oligomers with trifluoromethylphenyl groups, J. Am. Chem. Soc., 2005, 127(43): 14996–14997CrossRefGoogle Scholar
  26. 26.
    Zen A., Pflaum J., Hirschmann S., Zhuang W., Jaiser F., Asawapiron U., Rabe J. P., Scherf U. and Neher D. Effect of molecular weight and annealing of poly (3-hexylthiophene)s on the performance of organic field-effect transistors, Adv. Funct. Mater., 2004, 14(8): 757–764CrossRefGoogle Scholar
  27. 27.
    Murphy A. R., Chang P. C., VanDyke P., Liu J., Fréchet J. M. J., Subramanian V., DeLongchamp D. M., Sambasivan S., Fische D. A., Lin E. K. Self-assembly, molecular ordering, and charge mobility in solution-processed ultrathin oligothiophene films, Chem. Mater., 2005, 17(24): 6033–6041CrossRefGoogle Scholar
  28. 28.
    Roy V. A. L., Zhi Y. G., Xu Z. X., Yu S. C., Chan P. W. H. and Che C. M. Functionalized arylacetylene oligomers for organic thin-film transistors (OTFTs), Adv. Mater., 2005, 17(10): 1258–1261CrossRefGoogle Scholar
  29. 29.
    Ma Y. Q., Sun Y. M., Liu Y. Q., Gao J. H., Chen S. Y., Sun X. B., Qiu W. F., Yu G., Cui G. L., Hu W. P. and Zhu D. B. Organic thin film transistors based on stable amorphous ladder tetraazapentacenes semiconductors, J. Mater. Chem., 2005, 15(46): 4894–4898CrossRefGoogle Scholar
  30. 30.
    Xu H., Yu G., Xu W., Xu Y., Cui G. L., Zhang D. Q., Liu Y. Q. and Zhu D. B. High-performance field-effect transistors based on Langmuir-Blodgett films of cyclo[8]pyrrole, Langmuir, 2005, 21(12): 5391–5395CrossRefGoogle Scholar
  31. 31.
    Xu H., Wang Y., Yu G., Xu W., Song Y. B., Zhang D. Q., Liu Y. Q. and Zhu D. B. Organic field-effect transistors based on Langmuir-Blodgett films of an extended porphyrin analogue-Cyclo[6]pyrrole, Chem. Phys. Lett., 2005, 414(4–6): 369–373CrossRefGoogle Scholar
  32. 32.
    Sun Y. M., Xiao K., Liu Y. Q., Wang J. J., Pei J., Yu G. and Zhu D. B. Oligothiophene-functionalized truxene: Star-shaped compounds for organic field-effect transistors, Adv. Funct. Mater., 2005, 15(5): 818–822CrossRefGoogle Scholar
  33. 33.
    Xiao K., Liu Y. Q., Qi T., Zhang W., Wang F., Gao J. H., Qiu W. F., Ma Y. Q., Cui G. L., Chen S. Y., Zhan X. W., Yu G., Qin J. G., Hu W. P. and Zhu D. B. A highly pi-stacked organic semiconductor for field-effect transistors based on linearly condensed pentathienoacene, J. Am. Chem. Soc., 2005, 127(38): 13281–13286CrossRefGoogle Scholar
  34. 34.
    Liu Y. Q., Hu W. P., Qiu W. F., Xu Y., Zhou S. Q. and Zhu D. B. Organic field-effect transistors based on Langmuir-Blodgett films of substituted phthalocyanines, Sens. Actuator B-Chem., 2001, 80(3): 202–207CrossRefGoogle Scholar
  35. 35.
    Hu W. P., Nakashima H., Furukawa K., Kashimura Y., Ajito K., Liu Y. Q., Zhu D. B. and Torimitsu K. A self-assembled nano optical switch and transistor based on a rigid conjugated polymer, thioacetyl-end-functionalized poly(para-phenylene ethynylene), J. Am. Chem. Soc., 2005, 127(9): 2804–2805CrossRefGoogle Scholar
  36. 36.
    Sun Y. M., Ma Y. Q., Liu Y. Q., Lin Y. Y., Wang Z. Y., Wang Y., Di C. A., Xiao K., Chen X. M., Qiu W. F., Zhang B., Yu G., Hu W. P. and Zhu D. B. High-performance and stable organic thin-film transistors based on fused thiophenes, Adv. Funct. Mater., 2006, 16(3): 426–432CrossRefGoogle Scholar
  37. 37.
    Hu W. P., Liu Y. Q., Zhou S. Q., Tao J., Xu D. F. and Zhu D. B. Highly ordered vacuum-deposited thin films of copper phthalocyanine. induced by electric field, Thin Solid Films, 1999, 347(1–2): 299–301CrossRefGoogle Scholar
  38. 38.
    Xiao K., Liu Y. Q., Yu G. and Zhu D. B. Organic field-effect transistors using copper phthalocyanine thin film, Synthetic Metals, Synth. Met., 2003, 137(1–3): 991–992CrossRefGoogle Scholar
  39. 39.
    Tang Q. X., Li H. X., He M., Hu W. P., Liu C. M., Chen K. Q., Wang C., Liu Y. Q. and Zhu D. B. Low threshold voltage transistors based on individual single-crystalline submicrometer-sized ribbons of copper phthalocyanine, Advanced Materials, 2006, 18(1): 65–68CrossRefGoogle Scholar
  40. 40.
    Zhou S. Q., Liu Y. Q., Qiu W. F., Xu Y., Huang X. B., Li Y. S., Jiang L. and Zhu D. B. Synthetic molecular rectifier of a Langmuir-Blodgett film based on a novel asymmetrically substituted dicyano-tri-tert-butylphthalocyanine, Adv. Funct. Mater., 2002, 12(1): 65–69CrossRefGoogle Scholar
  41. 41.
    W. P. Hu, Liu Y. Q., Xu Y., Liu S. G., Zhou S. Q. and Zhu D. B. The application of Langmuir-Blodgett films of a new asymmetrically substituted phthalocyanine, amino-tri-tert-butylphthalocyanine in diodes and in all organic field-effect-transistors, Synth. Met., 1999, 104(1): 19–26CrossRefGoogle Scholar
  42. 42.
    Hu W. P., Liu Y. Q., Xu Y., Liu S. G., Zhou S. Q., Zhu D. B., Xu B., Bai C. L. and Wang C. The gas sensitivity of a metal-insulator-semiconductor field-effect-transistor based on Langmuir-Blodgett films of a new asymmetrically substituted phthalocyanine, Thin Solid Films, 2000, 360(1–2): 256–260CrossRefGoogle Scholar
  43. 43.
    Zhang H. J., Wang Y., Shao K. Z., Liu Y. Q., Chen S. Y., Qiu W. F., Sun X. B., Qi T., Ma Y. Q., Yu G., Su Z. M. and Zhu D. B. Novel butterfly pyrene-based organic semiconductors for field effect transistors, Chem. Comm., 2006, (7): 755–757Google Scholar
  44. 44.
    Fu L., Cao L. C., Liu Y. Q. and Zhu D. B. Molecular and nanoscale materials and devices in electronics, Adv. Colloid Interface Sci., 2004, 111(3): 133–157CrossRefGoogle Scholar
  45. 45.
    Hu W. P., Liu Y. Q., Xu Y., Liu S. G. and Zhu D. B. An organic field-effect-transistor based on Langmuir-Blodgett films of a new asymmetrically substituted phthalocyanine, 1,8-naphthaimide-tri-tert-butylphthalocyanine, Mol. Cryst. Liquid Cryst., 1999, 337, 511–514Google Scholar
  46. 46.
    Xiao K., Liu Y. Q., Huang X. B., Xu Y. and Zhu D. B. Field-effect transistors based on Langmuir-Blodgett films of phthalocyanine derivative as semiconductor layers, J. Phys. Chem. B, 2003, 107(35): 9226–9230CrossRefGoogle Scholar
  47. 47.
    Su W., Jiang J. Z., Xiao K., Chen Y. L., Zhao Q. Q., Yu G. and Liu Y. Q. Thin-film transistors based on Langmuir-Blodgett films of heteroleptic bis(phthalocyaninato) rare earth complexes, Langmuir, 2005, 21(14): 6527–6531CrossRefGoogle Scholar
  48. 48.
    Chen Y. L., Su W., Bai M., Jiang J. Z., Li X. Y., Liu Y. Q., Wang L. X. and Wang S. Q. High performance organic field-effect transistors based on amphiphilic tris(phthalocyaninato) rare earth triple-decker complexes, J. Am. Chem. Soc., 2005, 127(45): 15700–15701CrossRefGoogle Scholar
  49. 49.
    Wang X. B., Liu Y. Q. and Zhu D. B. Two-and three-dimensional alignment and patterning of carbon nanotubes, Adv. Mater., 2002, 14(2): 165–167CrossRefGoogle Scholar
  50. 50.
    Xiao K., Liu Y. Q., Hu P. A., Yu G., Fu L. and Zhu D.B. High-mobility thin-film transistors based on aligned carbon nanotubes, Appl. Phys. Lett., 2003, 83(1): 150–152CrossRefGoogle Scholar
  51. 51.
    Hu P. A., Xiao K., Liu Y. Q., Yu G., Wang X. B., Fu L., Cui G. L. And Zhu D. B. Multiwall nanotubes with intramolecular junctions (CNx/C): Preparation, rectification, logic gates, and application, Appl. Phys. Lett., 2004, 84(24): 4932–4934CrossRefGoogle Scholar
  52. 52.
    Xiao K., Liu Y. Q., Hu P. A., Yu G., Fu L. and Zhu D. B. High performance field-effect transistors made of a multiwall CNx/C nanotube intramolecular junction, Appl. Phys. Lett., 2003, 83(23): 4824–4826CrossRefGoogle Scholar
  53. 53.
    Xiao K., Liu Y. Q., Hu P. A., Yu G., Sun Y. M. and Zhu D. B. n-Type field-effect transistors made of an individual nitrogen-doped multiwalled carbon nanotube, J. Am. Chem. Soc., 2005, 127(24): 8614–8617CrossRefGoogle Scholar
  54. 54.
    Fu L., Liu Z. M., Liu Y. Q., Han B. X., Wang J. Q., Hu P. A., Cao L. C. and Zhu D. B. Coating carbon nanotubes with rare earth oxide multiwalled nanotubes, Advanced Materials, Adv. Mater., 2004, 16(4): 350–352CrossRefGoogle Scholar
  55. 55.
    Du J. M., Fu L., Liu Z. M., Han B. X., Li Z. H., Liu Y. Q., Sun Z. Y. and Zhu D. B. Facile route to synthesize multiwalled carbon nanotube/zinc sulfide heterostructures: Optical and electrical properties, J. Phys. Chem. B, 2005, 109(26): 12772–12776CrossRefGoogle Scholar
  56. 56.
    Fu L., Liu Y. Q., Liu Z. M., Han B. X., Cao L. C., Wei D. C., Yu G. and Zhu D. B. Carbon Nanotubes Coated with Alumina as Gate Dielectrics of Field-Effect Transistors, Adv. Mater., 2006, 18(2): 181–185CrossRefGoogle Scholar
  57. 57.
    Li X. L., Liu Y. Q., Shi D. C., Sun Y. M., Yu G. an Zhu D. B. Orientational self-assembled field-effect transistors based on a single-walled carbon nanotube, Appl. Phys. Lett., 2005, 87(24): 243102-1–243102-3Google Scholar
  58. 58.
    Sirringhaus H., Tessler N. and Friend R. H. Integrated optoelectronic devices based on conjugated polymers, Science, 198, 280(5370): 1741–1744Google Scholar
  59. 59.
    Darlinski G., Bottger U., Waser R., Klawk H., Halik M., Zschieschang U., Schnid G. and Dehn C. Mechanical force sensors using organic thin-film transistors, J. Appl. Phys., 2005, 97(9): 093708-1–093708-4CrossRefGoogle Scholar
  60. 60.
    Someya T., Sekitani T., Iba S., Kato Y., Kawaguchi H. and Sakurai T. A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications, Proc. Natl. Acad. Sci., 2004, 101(27): 9966–9970CrossRefGoogle Scholar
  61. 61.
    Noh Y. Y., Kim D. Y., Yase K. Highly sensitive thin-film organic phototransistors: Effect of wavelength of light source on device performance, J. Appl. Phys., 2005, 98(7): 074505-1–074505-7CrossRefGoogle Scholar
  62. 62.
    Breban M., Romero D. B., Mezhenny S., Ballarotto V. W. and Williams F. D. Photocurrent probe of field-dependent mobility in organic thin-film transistors, Appl. Phys. Lett., 2005, 87(20): 203503-1–203503-3CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag 2006

Authors and Affiliations

  • Wu Weiping 
    • 1
  • Xu Wei 
    • 1
  • Hu Wenping 
    • 1
  • Liu Yunqi 
    • 1
    Email author
  • Zhu Daoben 
    • 1
  1. 1.Key Laboratory of Organic Solids, Institute of ChemistryChinese Academy of SciencesBeijingChina

Personalised recommendations