Advertisement

Journal of Geographical Sciences

, Volume 29, Issue 9, pp 1441–1461 | Cite as

Analyses of geographical observations in the Heihe River Basin: Perspectives from complexity theory

  • Jianbo GaoEmail author
  • Peng Fang
  • Lihua Yuan
Article
  • 1 Downloads

Abstract

Since 2005, dozens of geographical observational stations have been established in the Heihe River Basin (HRB), and by now a large amount of meteorological, hydrological, and ecological observations as well as data pertaining to water resources, soil and vegetation have been collected. To adequately analyze these available data and data to be further collected in future, we present a perspective from complexity theory. The concrete materials covered include a presentation of adaptive multiscale filter, which can readily determine arbitrary trends, maximally reduce noise, and reliably perform fractal and multifractal analysis, and a presentation of scale-dependent Lyapunov exponent (SDLE), which can reliably distinguish deterministic chaos from random processes, determine the error doubling time for prediction, and obtain the defining parameters of the process examined. The adaptive filter is illustrated by applying it to obtain the global warming trend and the Atlantic multidecadal oscillation from sea surface temperature data, and by applying it to some variables collected at the HRB to determine diurnal cycle and fractal properties. The SDLE is illustrated to determine intermittent chaos from river flow data.

Keywords

Heihe River basin geographical observation complexity theory adaptive multiscale filter fractal analysis scale-dependent Lyapunov exponent 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amaral L A N, Goldberger A L, Ivanov P C et al., 1998. Scale-independent measures and pathologic cardiac dynamics. Physical Review Letters, 81(1): 2388–2391.CrossRefGoogle Scholar
  2. Anderson P L, Meerschaert M M, 1998. Modeling river flows with heavy tails. Water Resources Research, 34: 2271–2280.CrossRefGoogle Scholar
  3. Bernaola-Galvan P, Ivanov P C, Amaral L A N et al., 2001. Scale invariance in the nonstationarity of human heart rate. Physical Review Letters, 87(16): 168105.CrossRefGoogle Scholar
  4. Bowers M C, Gao J, Tung W, 2013. Long-range correlations in tree ring chronologies of the USA: Variation within and across species. Geophysical Research Letters, 40: 568–572. doi:  https://doi.org/10.1029/2012GL054011 CrossRefGoogle Scholar
  5. Bowers M C, Tung W, Gao J, 2012. On the distributions of seasonal river flows: Lognormal or power law? Water Resources Research, 48: W05536. doi:  https://doi.org/10.1029/2011WR011308.CrossRefGoogle Scholar
  6. Box G E P, Jenkins G M, 1976. Time Series Analysis: Forecasting and Control. 2nd ed. San Francisco: Holden-Day.Google Scholar
  7. Chen Y, Ding M, Kelso J, 1997. Long memory processes (1/fa Type) in human coordination. Physical Review Letters, 79(22): 4501–4504.CrossRefGoogle Scholar
  8. Cheng G, Zhao W, Feng Z et al., 2014. Integrated study of the water-ecosystem-economy in the Heihe River Basin. National Science Review, 1(3): 413–428.CrossRefGoogle Scholar
  9. Collins J J, Luca C J D, 1994. Random walking during quiet standing. Physical Review Letters, 73(5): 764–767.CrossRefGoogle Scholar
  10. Cox D R, 1984. Long-range dependence: A review. In: David H A, David H T. Statistics: An appraisal. Ames, Iowa: The Iowa State University Press, 55–74Google Scholar
  11. De Domenico M, Latora V, 2011. Scaling and universality in river flow dynamics. Europhysics Letters, 94(5): 58002. doi:  https://doi.org/10.1209/0295-5075/94/58002.CrossRefGoogle Scholar
  12. Evensen G, 1994. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte-Carlo methods to forecast error statistics. Journal of Geophysical Research, 99(C5): 10143–10162.Google Scholar
  13. Evensen G, 2007. Data Assimilation, the Ensemble Kalman Filter. Berlin, Heidelberg: Springer.Google Scholar
  14. Feigenbaum M J, 1983. Universal behavior in nonlinear systems. Physica D: Nonlinear Phenomena, 7: 16–39.CrossRefGoogle Scholar
  15. Feng Q, Endo K, Cheng G, 2001. Towards sustainable development of the environmentally degraded arid rivers of China: A case study from Tarim River. Environmental Geology, 41: 229–238.CrossRefGoogle Scholar
  16. Fraser A, Swinney H, 1986. Independent coordinates for strange attractors from mutual information. Physical Review A, 33: 1134–1140.CrossRefGoogle Scholar
  17. Frisch U, 1995. Turbulence: The Legacy of A.N. Kolmogorov. New York: Cambridge University Press.CrossRefGoogle Scholar
  18. Gao J, Billock V, Merk I et al., 2006a. Inertia and memory in ambiguous visual perception. Cognitive Processing, 7: 105–112.CrossRefGoogle Scholar
  19. Gao J, Cao Y, Tung W et al., 2007. Multiscale Analysis of Complex Time Series: Integration of Chaos and Random Fractal Theory, and Beyond. Hoboken, NJ: John Wiley & Sons, Inc.CrossRefGoogle Scholar
  20. Gao J, Chen C C, Hwang S K et al., 1999a. Noise-induced chaos. International Journal of Modern Physics B, 13(28): 3283–3305.CrossRefGoogle Scholar
  21. Gao J, Fang P, Liu F, 2017. Empirical scaling law connecting persistence and severity of global terrorism. Physica A: Statistical Mechanics and Its Applications, 482: 74–86.CrossRefGoogle Scholar
  22. Gao J, Hu J, Mao X et al., 2012a. Culturomics meets random fractal theory: Insights into long-range correlations of social and natural phenomena over the past two centuries. Journal of the Royal Society Interface, 9(73): 1956–1964.CrossRefGoogle Scholar
  23. Gao J, Hu J, Mao X et al., 2012b. Detecting low-dimensional chaos by the “noise titration” technique: Possible problems and remedies. Chaos, Solitons, & Fractals, 45: 213–223.CrossRefGoogle Scholar
  24. Gao J, Hu J, Tung W et al., 2006b. Assessment of long range correlation in time series: How to avoid pitfalls. Physical Review E, 73: 016117. doi:  https://doi.org/10.1103/PhysRevE.73.016117.CrossRefGoogle Scholar
  25. Gao J, Hu J, Tung W et al., 2006c. Distinguishing chaos from noise by scale-dependent Lyapunov exponent. Physical Review E, 74: 066204. doi:  https://doi.org/10.1103/PhysRevE.74.066204.CrossRefGoogle Scholar
  26. Gao J, Hu J, Tung W, 2009. Quantifying dynamical predictability: The pseudo-ensemble approach. Chinese Annals of Mathematics, Series B, 30(5): 569–588.CrossRefGoogle Scholar
  27. Gao J, Hu J, Tung W et al., 2011a. Multiscale analysis of economic time series by scale-dependent Lyapunov exponent. Quantitative Finance, 13(2): 265–274.CrossRefGoogle Scholar
  28. Gao J, Hu J, Tung W, 2011b. Facilitating joint chaos and fractal analysis of biosignals through nonlinear adaptive filtering. PLoS One, 6(9): e24331. doi:  https://doi.org/10.1371/journal.pone.0024331.CrossRefGoogle Scholar
  29. Gao J, Hu J, Tung W, 2011c. Complexity measures of brain wave dynamics. Cognitive Neurodynamics, 5: 171–182.CrossRefGoogle Scholar
  30. Gao J, Hu J, Tung W et al., 2012c. Multiscale analysis of physiological data by scale-dependent Lyapunov exponent. Frontiers in Fractal Physiology, 2: 110. doi:  https://doi.org/10.3389/fphys.2011.00110.Google Scholar
  31. Gao J, Hwang S K, Liu J M, 1999b. When can noise induce chaos? Physical Review Letters, 82: 1132–1135.CrossRefGoogle Scholar
  32. Gao J, Qi Y, Cao Y et al., 2005a. Protein coding sequence identification by simultaneously characterizing the periodic and random features of DNA sequences. Journal of biomedicine and biotechnology, 2: 139–146.CrossRefGoogle Scholar
  33. Gao J, Rao N S V, Hu J et al., 2005b. Quasi-periodic route to chaos in the dynamics of Internet transport protocols. Physical Review Letters, 94: 198702. doi:  https://doi.org/10.1103/PhysRevLett.94.198702.CrossRefGoogle Scholar
  34. Gao J, Rubin I, 2001. Multifractal modeling of counting processes of long-range-dependent network traffic. Computer Communications, 24: 1400–1410.CrossRefGoogle Scholar
  35. Gao J, Sultan H, Hu J et al., 2010. Denoising nonlinear time series by adaptive filtering and wavelet shrinkage: A comparison. IEEE Signal Processing Letters, 17: 237–240.CrossRefGoogle Scholar
  36. Gao J, Zheng Z, 1993. Local exponential divergence plot and optimal embedding of a chaotic time series. Physical Review A, 181: 153–158.Google Scholar
  37. Gao J, Zheng Z, 1994. Direct dynamical test for deterministic chaos and optimal embedding of a chaotic time series. Physical Review E, 49: 3807–3814.CrossRefGoogle Scholar
  38. Gilden D H, Mallon A M, Thornton M T, 1995. 1/f noise in human cognition. Science, 267(5205): 1837–1839.CrossRefGoogle Scholar
  39. Hu J, Gao J, Cao Y et al., 2007. Exploiting noise in array CGH data to improve detection of DNA copy number change. Nucleic Acids Research, 35(5): e35. doi:  https://doi.org/10.1093/nar/gkl730.CrossRefGoogle Scholar
  40. Hu J, Gao J, Tung W, 2009a. Characterizing heart rate variability by scale-dependent Lyapunov exponent. Chaos, 19: 028506. doi:  https://doi.org/10.1063/1.3152007.CrossRefGoogle Scholar
  41. Hu J, Gao J, Tung W et al., 2010. Multiscale analysis of heart rate variability: A comparison of different complexity measures. Annals of Biomedical Engineering, 38: 854–864.CrossRefGoogle Scholar
  42. Hu J, Gao J, Wang X, 2009b. Multifractal analysis of sunspot time series: The effects of the 11-year cycle and Fourier truncation. Journal of Statistical Mechanics: Theory and Experiment, 2: P02066. doi:  https://doi.org/10.1088/1742-5468/2009/02/P02066.Google Scholar
  43. Islam M N, Sivakumar B, 2002. Characterization and prediction of runoff dynamics: A nonlinear dynamical view. Advances in Water Research, 25: 179–190.CrossRefGoogle Scholar
  44. Ivanov P C, Rosenblum M G, Amaral L A N et al., 1999. Multifractality in human heartbeat dynamics. Nature, 399(6735): 461–465.CrossRefGoogle Scholar
  45. Ivanov P C, Rosenblum M G, Peng C K et al., 1996. Scaling behaviour of heartbeat intervals obtained by wavelet- based time-series analysis. Nature, 383(6598): 323–327.CrossRefGoogle Scholar
  46. Kennel M, Brown R, Abarbanel H, 1992. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Physical Review A, 45: 3403–3411.CrossRefGoogle Scholar
  47. Li D, Feng J, Chen L et al., 2003. Study on interdecadal change of Heihe runoff and Qilian Mountain's climate. Plateau Meteorology, 22(2): 104–110. (in Chinese)Google Scholar
  48. Li S C, Wang Y, Cai Y L, 2010. The paradigm transformation of geography from the perspective of complexity sciences. Acta Geographica Sinica, 65(12): 1315–1324. (in Chinese)Google Scholar
  49. Li W, Kaneko K, 1992. Long-range correlation and partial 1/f a spectrum in a noncoding DNA sequence. Europhysics Letters, 17(7): 655–660.CrossRefGoogle Scholar
  50. Li X, Cheng G, Liu S et al., 2013. Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific objectives and experimental design. Bulletin of the American Meteorological Society, 94(8): 1145–1160.CrossRefGoogle Scholar
  51. Liebert W, Pawelzik K, Schuster H, 1991. Optimal embedding of chaotic attractors from topological considerations. Europhysics Letters, 14: 521–526.CrossRefGoogle Scholar
  52. Liu F, Li X, 2017. Formulation of scale transformation in a stochastic data assimilation framework. Nonlinear Processes in Geophysics, 24(2): 279–291.CrossRefGoogle Scholar
  53. Liu S M, Li X, Xu Z W et al., 2018. The Heihe integrated observatory network: A basin-scale land surface processes observatory in China. Vadose Zone Journal, 17: 180072. doi:  https://doi.org/10.2136/vzj2018.04.0072.CrossRefGoogle Scholar
  54. Liu S M, Xu Z, Wang W et al., 2011. A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem. Hydrology and Earth System Sciences, 15(4): 1291–1306.CrossRefGoogle Scholar
  55. Lorenz E N, 1995. Predictability: A problem partly solved. In: Proceedings of Seminar on Predictability, Reading Berkshire, United Kingdom: European Centre for Medium-Range Weather Forecasts, 1–18.Google Scholar
  56. Mandelbrot B B, 1982. The Fractal Geometry of Nature. San Francisco: Freeman.Google Scholar
  57. Micklin P P, 1988. Desiccation of the Aral Sea: A water management disaster in the Soviet Union. Science, 241: 1170–1176.CrossRefGoogle Scholar
  58. Miller R N, 2007. Topics in data assimilation: Stochastic processes. Physica D: Nonlinear Phenomena, 230(1): 17–26.CrossRefGoogle Scholar
  59. Mintz Y, 1965. A very long-term global integration of the primitive equations of atmospheric motion: An experiment in climate simulation. In: Mitchell J M. Causes of Climatic Change. Meteorological Monographs. Boston, MA: American Meteorological Society, 22–36.Google Scholar
  60. Osborne A R, Provenzale A, 1989. Finite correlation dimension for stochastic-systems with power-law spectra. Physica D: Nonlinear Phenomena, 35: 357–381.CrossRefGoogle Scholar
  61. Packard N H, Crutchfield J P, Farmer J D et al., 1980. Geometry from a time series. Physical Review Letters, 45: 712–716.CrossRefGoogle Scholar
  62. Peng C K, Buldyrev S V, Goldberger A L et al., 1992. Long-range correlations in nucleotide sequences. Nature, 356(6365): 168–170.CrossRefGoogle Scholar
  63. Pomeau Y, Manneville P, 1980. Intermittent transition to turbulence in dissipative dynamical systems. Communications in Mathematical Physics, 74: 189–197.CrossRefGoogle Scholar
  64. Provenzale A, Osborne A R, Soj R, 1991. Convergence of the K2 entropy for random noises with power law spectra. Physica D: Nonlinear Phenomena, 47: 361–372.CrossRefGoogle Scholar
  65. Ruelle D, Takens F, 1971. On the nature of turbulence. Communications in Mathematical Physics, 20(3): 167–19CrossRefGoogle Scholar
  66. Ryan D A, Sarson G R, 2008. The geodynamo as a low-dimensional deterministic system at the edge of chaos. Europhysics Letters, 83: 49001. doi:  https://doi.org/10.1209/0295-5075/83/49001.CrossRefGoogle Scholar
  67. Sauer T, Yorke J A, Casdagli M, 1991. Embedology. Journal of Statistical Physics, 65(3/4): 579–616.CrossRefGoogle Scholar
  68. Shen S, Ye S J, Cheng C X et al., 2018. Persistence and corresponding time scales of soil moisture dynamics during summer in the Babao River Basin, Northwest China. Journal of Geophysical Research: Atmospheres, 123: 8936–8948. doi:  https://doi.org/10.1029/2018JD028414.Google Scholar
  69. Simmons A, Hollingsworth A, 2002. Some aspects of the improvement in skill of numerical weather prediction. Quarterly Journal of the Royal Meteorological Society, 128(580): 647–677.CrossRefGoogle Scholar
  70. Sivakumar B, 2004. Chaos theory in geophysics: Past, present and future. Chaos, Solitons & Fractals, 19(2): 441–462.CrossRefGoogle Scholar
  71. Song C Q, Cheng C X, Shi P J, 2018. Geography complexity: New connotations of geography in the new era. Acta Geographica Sinica, 73(7): 1189–1198. (in Chinese)Google Scholar
  72. Song C Q, Yuan L H, Yang X F et al., 2017. Ecological-hydrological processes in arid environment: Past, present and future. Journal of Geographical Sciences, 27(12): 1577–1594.CrossRefGoogle Scholar
  73. Takens F, 1981. Detecting strange attractors in turbulence. In: Rand D, Young L S. Dynamical Systems and Turbulence. Lecture Notes in Mathematics. Berlin: Springer-Verlag, 366–381.Google Scholar
  74. Tessier Y, Lovejoy S, Hubert P et al., 1996. Multifractal analysis and modeling of rainfall and river flows and scaling, causal transfer functions. Journal of Geophysical Research: Atmospheres, 101(D21): 26427–26440.CrossRefGoogle Scholar
  75. Tung W, Gao J, Hu J et al., 2011. Detecting chaotic signals in heavy noise environments. Physical Review E, 83: 046210. doi:  https://doi.org/10.1103/PhysRevE.83.046210.CrossRefGoogle Scholar
  76. Turcotte D L, 1995. Chaos, fractals, nonlinear phenomena in earth sciences. Reviews of Geophysics, 33(Suppl.1): 341–344.CrossRefGoogle Scholar
  77. Voss R F, 1992. Evolution of long-range fractal correlations and 1/f noise in DNA base sequences. Physical Review Letters, 68(25): 3805–3808.CrossRefGoogle Scholar
  78. Wang P, Li Z, Gao W et al., 2011. Glacier changes in the Heihe River Basin over the past 50 years in the context of climate change. Resources Science, 33(3): 399–407. (in Chinese)Google Scholar
  79. Wang W, Vrijling J K, Van Gelder P H A J M et al., 2006. Testing for nonlinearity of streamflow processes at different timescales. Journal of Hydrology, 322: 247–268.CrossRefGoogle Scholar
  80. Wolf A, Swift, J B, Swinney H L et al., 1985. Determining Lyapunov exponents from a time series. Physica D: Nonlinear Phenomena, 6: 285–317.CrossRefGoogle Scholar
  81. Wolf M, 1997. 1/f noise in the distribution of prime numbers. Physica A: Statistical Mechanics and Its Applications, 241(3/4): 493–499.CrossRefGoogle Scholar
  82. Xiao S, Xiao H, Kobayashi O, 2007. Dendroclimatological investigations of sea buckthorn (Hippophae rhamnoides) and reconstruction of the equilibrium line altitude of the July First Glacier in the western Qilian Mountains, northwestern China. Tree-Ring Research, 63: 15–26.CrossRefGoogle Scholar
  83. Yang J, Su K, Ye S J, 2019. Stability and long-range correlation of air temperature in the Heihe River Basin. Journal of Geographical Sciences, 29(9): 1462–1474.Google Scholar
  84. Zhang T, Shen S, Cheng C X et al., 2018. Long-range correlation analysis of soil temperature and moisture on A'rou hillsides, Babao River Basin. Journal of Geophysical Research: Atmospheres, 123: 12606–12620. doi.org/ https://doi.org/10.1029/2018JD029094.Google Scholar

Copyright information

© Science Press 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical ScienceBeijing Normal UniversityBeijingChina
  2. 2.Institute of Complexity Science and Big Data TechnologyGuangxi UniversityNanningChina
  3. 3.Wuhan National Laboratory for Optoelectronics, Key Laboratory of Information Storage System, Engineering Research Center of Data Storage Systems and Technology, Ministry of Education of China, School of Computer Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
  4. 4.Center for GeoData and Analysis, Faculty of Geographical ScienceBeijing Normal UniversityBeijingChina

Personalised recommendations