Advertisement

Journal of Geographical Sciences

, Volume 29, Issue 1, pp 3–28 | Cite as

Tracking climate change in Central Asia through temperature and precipitation extremes

  • Man Zhang
  • Yaning Chen
  • Yanjun Shen
  • Baofu Li
Article
  • 28 Downloads

Abstract

Under the impacts of climate change and human activities, great uncertainties still exist in the response of climate extremes, especially in Central Asia (CA). In this study, we investigated spatial-temporal variation trends and abrupt changes in 17 indices of climate extremes, based on daily climate observations from 55 meteorological stations in CA during 1957–2005. We also speculated as to which atmospheric circulation factors had the greatest impacts on climate extremes. Our results indicated that the annual mean temperature (Tav), mean maximum and minimum temperature significantly increased at a rate of 0.32ºC/10a, 0.24ºC/10a and 0.41ºC/10a, respectively, which was far higher than the increasing rates either globally or across the Northern Hemisphere. Other temperature extremes showed widespread significant warming trends, especially for those indices derived from daily minimum temperature. All temperature extremes exhibited spatially widespread rising trends. Compared to temperature changes, precipitation extremes showed higher spatial and temporal variabilities. The annual total precipitation significantly increased at a rate of 4.76 mm/10a, and all precipitation extremes showed rising trends except for annual maximum consecutive dry days (CDD), which significantly decreased at a rate of –3.17 days/10a. On the whole, precipitation extremes experienced slight wetter trends in the Tianshan Mountains, Kazakhskiy Melkosopochnik (Hill), the Kyzylkum Desert and most of Xinjiang. The results of Cumulative Deviation showed that Tav and Txav had a significant abrupt change around 1987, and all precipitation indices experienced abrupt changes in 1986. Spearman’s correlation analysis pointed to Siberian High and Tibetan Plateau Index_B as possibly being the most important atmospheric circulation factors affecting climate extremes in CA. A full quantitative understanding of these changes is crucial for the management and mitigation of natural hazards in this region.

Keywords

abrupt change atmospheric circulation climate change climate extremes spatial-temporal variability Central Asia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aizen V B, Kuzmichenok V A, Surazakov A B et al., 2006. Glacier changes in the central and northern Tien Shan during the last 140 years based on surface and remote-sensing data. Annals of Glaciology, 43(1): 202–213. doi: 10.3189/172756406781812465.CrossRefGoogle Scholar
  2. Alexander L V, 2016. Global observed long-term changes in temperature and precipitation extremes: A review of progress and limitations in IPCC assessments and beyond. Weather and Climate Extremes, 11: 4–16. doi: 10.1016/j.wace.2015.10.007.CrossRefGoogle Scholar
  3. Alexander L V, Arblaster J M, 2009. Assessing trends in observed and modelled climate extremes over Australia in relation to future projections. International Journal of Climatology, 29: 417–435. doi: 10.1002/joc.1730.CrossRefGoogle Scholar
  4. Alexander L V, Zhang X, Peterson, T C et al., 2006. Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research, 111: D5. doi: 10.1029/2005jd006290.Google Scholar
  5. Bothe O, Fraedrich K, Zhu X H, 2012. Precipitation climate of Central Asia and the large-scale atmospheric circulation. Theoretical and Applied Climatology, 108: 345–354. doi: 10.1007/s00704-011-0537-2.CrossRefGoogle Scholar
  6. Buishand T A, 1982. Some methods for testing the homogeneity of rainfall records. Journal of Hydrology, 58: 11–27. doi: 10.1016/0022-1694(82)90066-X.CrossRefGoogle Scholar
  7. Chen F H, Wang J S, Jin L Y et al., 2009. Rapid warming in mid-latitude Central Asia for the past 100 years. Frontiers of Earth Science in China, 3: 42–50. doi: 10.1007/s11707-009-0013-9.CrossRefGoogle Scholar
  8. Chen F H, Yu Z, Yang M et al., 2008. Holocene moisture evolution in arid Central Asia and its out-of-phase relationship with Asian monsoon history. Quaternary Science Reviews, 27: 351–364. doi: 10.1016/j.quascirev.2007.10.017.CrossRefGoogle Scholar
  9. Chen H P, Sun, J Q, 2017. Anthropogenic warming has caused hot droughts more frequently in China. Journal of Hydrology, 544: 306–318. doi: 10.1016/j.jhydrol.2016.11.044.CrossRefGoogle Scholar
  10. Chen Y N, Deng H J, Li B F et al., 2014. Abrupt change of temperature and precipitation extremes in the arid region of Northwest China. Quaternary International, 336: 35–43. doi: 10.1016/j.quaint.2013.12.057.CrossRefGoogle Scholar
  11. Chen Y N, Li Z, Fan Y T et al., 2015. Progress and prospects of climate change impacts on hydrology in the arid region of Northwest China. Environmental Research, 139: 11–19. doi: 10.1016/j.envres.2014.12.029.CrossRefGoogle Scholar
  12. Chen Y N, Li Z, Li W H et al., 2016. Water and ecological security: Dealing with hydroclimatic challenges at the heart of China’s Silk Road. Environmental Earth Sciences, 75: 881. doi: 10.1007/s12665-016-5385-z.CrossRefGoogle Scholar
  13. Cheng H, Spötl C, Breitenbach S F M et al., 2016. Climate variations of Central Asia on orbital to millennial timescales. Scientific Reports, 6: 36975. doi: 10.1038/srep36975.CrossRefGoogle Scholar
  14. Cohen J, Saito K, Entekhabi D, 2001. The role of the Siberian High in Northern Hemisphere climate variability. Geophysical Research Letters, 28: 299–302. doi: 10.1029/2000GL011927.CrossRefGoogle Scholar
  15. Deng H J, Chen Y N, Shi X et al., 2014. Dynamics of temperature and precipitation extremes and their spatial variation in the arid region of Northwest China. Atmospheric Research, 138: 346–355. doi: 10.1016/j.atmosres.2013.12.001.CrossRefGoogle Scholar
  16. Diffenbaugh N S, Singh D, Mankin J S et al., 2017. Quantifying the influence of global warming on unprecedented extreme climate events. Proceedings of the National Academy of Sciences, 114: 4881–4886. doi: 10.1073/pnas.1618082114.CrossRefGoogle Scholar
  17. Donat M G, Lowry A L, Alexander L V et al., 2016. More extreme precipitation in the world’s dry and wet regions. Nature Climate Change, 6: 508–513. doi: 10.1038/NCLIMATE2941.CrossRefGoogle Scholar
  18. Donat M G, Peterson T C, Brunet M et al., 2014. Changes in extreme temperature and precipitation in the Arab region: Long-term trends and variability related to ENSO and NAO. International Journal of Climatology, 34: 581–592. doi: 10.1002/joc.3707.CrossRefGoogle Scholar
  19. Dugmore A J, Borthwick D M, Church M J et al., 2007. The role of climate in settlement and landscape change in the North Atlantic Islands: An assessment of cumulative deviations in high-resolution proxy climate records. Human Ecology, 35: 169–178. doi: 10.1007/s10745-006-9051-z.CrossRefGoogle Scholar
  20. Easterling D R, Meehl G A, Parmesan C et al., 2000. Climate extremes: Observations, modeling, and impacts. Science, 289, 2068–2074. doi: 10.1126/science.289.5487.2068.CrossRefGoogle Scholar
  21. Frachetti M D, Smith C E, Traub C M et al., 2017. Nomadic ecology shaped the highland geography of Asia’s Silk Roads. Nature, 543: 193–198. doi: 10.1038/nature21696.CrossRefGoogle Scholar
  22. Gong D Y, Ho C H, 2002. The Siberian High and climate change over middle to high latitude Asia. Theoretical and applied climatology, 72(1): 1–9. doi: 10.1007/s007040200008.CrossRefGoogle Scholar
  23. Greve P, Orlowsky B, Mueller B et al., 2014. Global assessment of trends in wetting and drying over land. Nature Geoscience, 7: 716–721. doi: 10.1038/NGEO2247.CrossRefGoogle Scholar
  24. Hansen J, Ruedy R, Sato M et al., 2010. Global surface temperature change. Reviews of Geophysics, 48: RG4004. doi: 10.1029/2010RG000345.CrossRefGoogle Scholar
  25. Harris I P D J, Jones P D, Osborn T J et al., 2014. Updated high-resolution grids of monthly climatic observations: The CRU TS3. 10 Dataset. International Journal of Climatology, 34(3): 623–642. doi: 10.1002/joc.3711.CrossRefGoogle Scholar
  26. Herold N, Behrangi A, Alexander L V, 2017. Large uncertainties in observed daily precipitation extremes over land. Journal of Geophysical Research: Atmospheres, 122: 668–681. doi: 10.1002/2016JD025842.Google Scholar
  27. Howard K W F, Howard K K, 2016. The new “Silk Road Economic Belt” as a threat to the sustainable management of Central Asia’s transboundary water resources. Environmental Earth Sciences, 75: 976. doi: 10.1007/s12665-016-5752-9.CrossRefGoogle Scholar
  28. Hu Z, Hu Q, Zhang C et al., 2016. Evaluation of reanalysis, spatially interpolated and satellite remotely sensed precipitation data sets in Central Asia. Journal of Geophysical Research: Atmospheres, 121: 5648–5663. doi: 10.1002/2016JD024781.Google Scholar
  29. Hu Z Y, Zhang C, Hu Q et al., 2014. Temperature changes in Central Asia from 1979 to 2011 based on multiple datasets. Journal of Climate, 27: 1143–1167.CrossRefGoogle Scholar
  30. IPCC, 2012. Managing the risks of extreme events and disasters to advance climate change adaptation. In: Field C B, Barros V, Stocker T F et al. A Special Report Working Groups I and II of the Intergovernmental Panel on Climate Change. Cambridge, UK, and New York, NY, USA: Cambridge University Press, 109–290.Google Scholar
  31. IPCC, 2013: Summary for policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Stocker T F, Qin D, Plattner G-K et al. eds. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.Google Scholar
  32. Jeong J-H, Ou T, Linderholm H W et al., 2011. Recent recovery of the Siberian High intensity. Journal of Geophysical Research: Atmospheres, 116: D23102. doi: 10.1029/2011JD015904.Google Scholar
  33. Jones P D, Lister D H, Osborn T J et al., 2012. Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010. Journal of Geophysical Research: Atmospheres, 117: D05127.Google Scholar
  34. Karl T R, Easterling D R, 1999. Climate extremes: Selected review and future research directions. Climatic Change, 42: 309–325. doi: 10.1007/978-94-015-9265-9_17.CrossRefGoogle Scholar
  35. Kendall M G, 1975. Rank Correlation Measures. London: Charles Griffin, 202.Google Scholar
  36. Kim Y H, Min S K, Zhang X et al., 2016. Attribution of extreme temperature changes during 1951–2010. Climate Dynamics, 46(5/6): 1769–1782. doi: 10.1007/s00382-015-2674-2.CrossRefGoogle Scholar
  37. King A D, Alexander L V, Donat M G, 2013. The efficacy of using gridded data to examine extreme rainfall characteristics: A case study for Australia. International Journal of Climatology, 33: 2376–2387. doi: 10.1002/joc.3588.CrossRefGoogle Scholar
  38. Klein Tank A M G, Peterson T C, Quadir D A et al., 2006. Changes in daily temperature and precipitation extremes in Central and South Asia. Journal of Geophysical Research, 111: D16105. doi: 10.1029/2005JD006316.CrossRefGoogle Scholar
  39. Li B F, Chen Y N, Chen Z S et al., 2016a. Why does precipitation in Northwest China show a significant increasing trend from 1960 to 2010? Atmospheric Research, 167: 275–284. doi: 10.1016/j.atmosres.2015.08.017.CrossRefGoogle Scholar
  40. Li B F, Chen Y N, Shi X, 2012. Why does the temperature rise faster in the arid region of Northwest China? Journal of Geophysical Research: Atmospheres, 117: D16115. doi: 10.1029/2012JD017953.Google Scholar
  41. Li P Y, Qian H, Howard K W F et al., 2015a. Building a new and sustainable “Silk Road Economic Belt”. Environmental Earth Sciences, 74: 7267. doi: 10.1007/s12665-015-4739-2.CrossRefGoogle Scholar
  42. Li P Y, Qian H, Zhou W, 2017. Finding harmony between the environment and humanity: An introduction to the thematic issue of the Silk Road. Environmental Earth Sciences, 76: 105. doi: 10.1007/s12665-017-6428-9.CrossRefGoogle Scholar
  43. Li Z, Chen Y N, Li W H et al., 2015b. Potential impacts of climate change on vegetation dynamics in Central Asia. Journal of Geophysical Research: Atmospheres, 120: 12345–12356. doi: 10.1002/2015JD023618.Google Scholar
  44. Li Z, Chen Y N, Wang Y et al., 2016b. Drought promoted the disappearance of civilizations along the ancient Silk Road. Environmental Earth Sciences, 75: 1116. doi: 10.1007/s12665-016-5925-6.CrossRefGoogle Scholar
  45. Lioubimtseva E, Cole R, Adams J M et al., 2005. Impacts of climate and land-cover changes in arid lands of Central Asia. Journal of Arid Environments, 62: 285–308. doi: 10.1016/j.jaridenv.2004.11.005.CrossRefGoogle Scholar
  46. Lioubimtseva E, Henebry G M, 2009. Climate and environmental change in arid Central Asia: Impacts, vulnerability, and adaptations. Journal of Arid Environments, 73: 963–977. doi: 10.1016/j.jaridenv.2009.04.022.CrossRefGoogle Scholar
  47. Liu M X, Xu X L, Sun A Y et al., 2014. Is southwestern China experiencing more frequent precipitation extremes? Environmental Research Letters, 9: 064002. doi: 10.1088/1748-9326/9/6/064002.CrossRefGoogle Scholar
  48. Mann H B, 1945. Non-parametric tests against trend. Econometrica, 13: 245–259.CrossRefGoogle Scholar
  49. Mannig B, Müller M, Starke E et al., 2013. Dynamical downscaling of climate change in Central Asia. Global and Planetary Change, 110: 26–39. doi: 10.1016/j.gloplacha.2013.05.008.CrossRefGoogle Scholar
  50. Markov K V, 1951. Is Middle and Central Asia getting drier? Geografgiz, 24: 98–116.Google Scholar
  51. Menne M J, Durre I, Vose R S et al., 2012. An overview of the Global Historical Climatology Network-Daily Database. Journal of Atmospheric and Oceanic Technology, 29: 897–910.CrossRefGoogle Scholar
  52. Morice C P, Kennedy J J, Rayner N A et al., 2012. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. Journal of Geophysical Research: Atmospheres, 117: D08101. doi: 10.1029/2011JD017187.CrossRefGoogle Scholar
  53. Nunes A N, Lourenço L, 2015. Precipitation variability in Portugal from 1960 to 2011. Journal of Geographical Sciences, 25(7): 784–800.CrossRefGoogle Scholar
  54. Omondi P A, Awange J L, Forootan E et al., 2014. Changes in temperature and precipitation extremes over the Greater Horn of Africa region from 1961 to 2010. International Journal of Climatology, 34(4): 1262–1277. doi: 10.1002/joc.3763.CrossRefGoogle Scholar
  55. Peterson T C, Heim R R, Hirsch R et al., 2013. Monitoring and understanding changes in heat waves, cold waves, floods, and droughts in the United States: State of knowledge. Bulletin of the American Meteorological Society, 94(6): 821–834. doi: 10.1175/BAMS-D-12-00066.1.CrossRefGoogle Scholar
  56. Pritchard H D, 2017. Asia’s glaciers are a regionally important buffer against drought. Nature, 545: 169–174. doi: 10.1038/nature22062.CrossRefGoogle Scholar
  57. Schiemann R, Lüthi D, Vidale P L et al., 2008. The precipitation climate of Central Asia: Intercomparison of observational and numerical data sources in a remote semiarid region. International Journal of Climatology, 28: 295–314. doi: 10.1002/joc.1532.CrossRefGoogle Scholar
  58. Skansi M dl M, Brunet M, Sigró J et al., 2013. Warming and wetting signals emerging from analysis of changes in climate extreme indices over South America. Global and Planetary Change, 100: 295–307. doi: 10.1016/j.gloplacha.2012.11.004.CrossRefGoogle Scholar
  59. Stott P A, 2016. How climate change affects extreme weather events. Science, 352: 1517–1518. doi: 10.1126/science.aaf7271.CrossRefGoogle Scholar
  60. Stott P A, Christidis N, Otto F E L et al., 2016. Attribution of extreme weather and climate-related events. Wiley Interdisciplinary Reviews: Climate Change, 7(1): 23–41. doi: 10.1002/wcc.380.Google Scholar
  61. Trenberth K E, Fasullo J T, Shepherd T G, 2015. Attribution of climate extreme events. Nature Climate Change, 5: 725–730. doi: 10.1038/nclimate2657.CrossRefGoogle Scholar
  62. Wang H J, Chen Y N, Chen Z S, 2013a. Spatial distribution and temporal trends of mean precipitation and extremes in the arid region, northwest of China, during 1960–2010. Hydrological Processes, 27: 1807–1818. doi: 10.1002/hyp.9339.CrossRefGoogle Scholar
  63. Wang H J, Chen Y N, Shi X et al., 2013b. Changes in daily climate extremes in the arid area of northwestern China. Theoretical and Applied Climatology, 112: 15–28. doi: 10.1007/s00704-012-0698-7.CrossRefGoogle Scholar
  64. Wei W, Zhang R H, Wen M et al., 2017. Relationship between the Asian westerly jet stream and summer rainfall over Central Asia and North China: Roles of the Indian Monsoon and the South Asian High. Journal of Climate, 30: 537–552. doi: 10.1175/JCLI-D-15-0814.1.CrossRefGoogle Scholar
  65. Westra S, Alexander L V, Zwiers F W, 2013. Global increasing trends in annual maximum daily precipitation. Journal of Climate, 26: 3904–3918. doi: 10.1175/JCLI-D-12-00502.1.CrossRefGoogle Scholar
  66. Yatagai A, Kamiguchi K, Arakawa O et al., 2012. Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bulletin of the American Meteorological Society, 93: 1401–1415. doi: 10.1175/BAMS-D-11-00122.1.CrossRefGoogle Scholar
  67. You Q L, Kang S C, Aguilar E et al., 2008. Changes in daily climate extremes in the eastern and central Tibetan Plateau during 1961–2005. Journal of Geophysical Research: Atmospheres, 113: D07101. doi: 10.1029/2007jd009389.CrossRefGoogle Scholar
  68. You Q L, Kang S C, Aguilar E et al., 2011. Changes in daily climate extremes in China and their connection to the large scale atmospheric circulation during 1961–2003. Climate Dynamics, 36: 2399–2417. doi: 10.1007/s00382-009-0735-0.CrossRefGoogle Scholar
  69. Zhang C J, Xie J N, Li D L et al., 2002. Effect of East-Asian monsoon on drought climate of Northwest China. Plateau Meteorology, 21(2): 193–198. (in Chinese)Google Scholar
  70. Zhang M, Chen Y N, Shen Y J et al., 2017. Changes of precipitation extremes in arid Central Asia. Quaternary International, 436: 16–27. doi: 10.1016/j.quaint.2016.12.024.CrossRefGoogle Scholar
  71. Zhang X B, Aguilar E, Sensoy S et al., 2005. Trends in Middle East climate extreme indices from 1950 to 2003. Journal of Geophysical Research: Atmospheres, 110: D22. doi: 10.1029/2005JD006181.Google Scholar
  72. Zhang X B, Feng Y, 2004. R ClimDex (1.0). User Manual. Climate research branch environment Canada Downsview, Ontario Canada.Google Scholar
  73. Zhang X B, Wan H, Zwiers F W et al., 2013. Attributing intensification of precipitation extremes to human influence. Geophysical Research Letters, 40: 5252–5257. doi: 10.1002/grl.51010.CrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Man Zhang
    • 1
    • 2
  • Yaning Chen
    • 2
  • Yanjun Shen
    • 3
  • Baofu Li
    • 4
  1. 1.College of Resources and Environmental ScienceHebei Normal UniversityShijiazhuangChina
  2. 2.State Key Laboratory of Desert and Oasis EcologyXinjiang Institute of Ecology and Geography, CASUrumqiChina
  3. 3.Key Laboratory of Agricultural Water ResourcesCenter for Agricultural Resources Research, CASShijiazhuangChina
  4. 4.College of Geography and TourismQufu Normal UniversityRizhao, ShandongChina

Personalised recommendations