Advertisement

Journal of Geographical Sciences

, Volume 17, Issue 1, pp 3–19 | Cite as

The influence of micro-climate, snow cover, and soil moisture on ecosystem functioning in high mountains

  • Jörg Löffler
Article

Abstract

The dynamics of water and energy fluxes in the high mountains of central Norway was studied along micro-spatial topographic gradients in different altitudes and regions of the Scandes. Landscape ecological processes like snow accumulation during winter, snow melting, evaporation, percolation, soil moisture variability and temperature variations were quantified. Combining spatio-temporal data on physical environment functioning and vegetation patterns resulted in a process-oriented characterisation of high mountain ecosystems. Extensive data from long-term measurements were synthesised illustrating the influence of micro-climate, snow cover, and soil moisture on high mountain ecosystem functioning. The results reveal that the micro-climatic impact on the vegetation is predominantly determined by snow cover overlaying soil moisture gradients. Water only becomes superior where near-surface water saturation and flooding occur. A lack of soil moisture availability was not found during any time of the year even under driest site conditions. Contrasting literature, the Norwegian mountain vegetation was found to be interpreted by environmental variable constellations excluding drought stress.

Keywords

Landscape ecology mountain research climatic change response Norway 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ACIA, 2004. Impacts of a Warming Arctic: Arctic Climate Impact Assessment. Cambridge.Google Scholar
  2. Barry R G, 1992. Mountain Weather and Climate. London.Google Scholar
  3. Bastian O, Steinhardt U (eds.), 2002. Development and Perspectives of Landscape Ecology. Dordrecht.Google Scholar
  4. Becker A, Bugmann H (eds.), 2001. Global Change and Mountain Regions: The Mountain Research Initiative. IGBP Report 49, GTOS Report 28, IHDP Report 13. Stockholm.Google Scholar
  5. Beniston M, 2003. Climatic change in mountain regions: a review of possible impacts. Climatic Change, 59: 5–31.CrossRefGoogle Scholar
  6. Bernes C, 1993. The Nordic Environment-Present State, Trends and Threats. Nordic Council of Minister. Nord 12. Copenhagen.Google Scholar
  7. Billings W D, Bliss L C, 1959. An Alpine Snowbank environment and its effects on vegetation, plant development, and productivity. Ecology, 40: 388–397.CrossRefGoogle Scholar
  8. Bliss L, Heal O W, Moore J J (eds.), 1981. Tundra Ecosystems: A Comparative Analysis. IBP 25, Cambridge.Google Scholar
  9. Dahl E, 1956. Rondane Mountain Vegetation in South Norway and its Relation to the Environment. Skr. utg. av Det Norske Vid. Akad. i Oslo. Mat.-Nat. Kl. 3. Oslo.Google Scholar
  10. Dahl E, 1986. Zonation in Arctic and alpine tundra and fellfield ecobiomes. In: N Polunin (ed.). Ecosystem Theory and Application. Chichester, 35–62.Google Scholar
  11. Dahl E, 1998. The Phytogeography of Northern Europe (British Isles, Fennoscandia and adjacent Areas). Cambridge.Google Scholar
  12. Diekkrüger B, Richter O, 1997. Regionalization in Hydrology. Landschaftsökologie und Umweltforschung, 25. Braunschweig.Google Scholar
  13. Dirnböck T, Dullinger S, Grabherr G, 2003. A regional impact assessment of climate and land-use change on alpine vegetation. Journal of Biogeography, 30: 401–417.CrossRefGoogle Scholar
  14. Döbeli C, 2000. Das hochalpine Geoökosystem der Gemmi (Walliser Alpen). Eine landschaftsökologische Charakterisierung und der Vergleich mit der arkti-schen Landschaft (Liefdefjorden, Nordwest-Spitzbergen). Basler Beiträge zur Physiogeographie: Physiogeographica 28, Basel.Google Scholar
  15. Duttmann R, 1999. Partikuläre Stoffverlagerungen in Landschaften. Ansätze zur flächenhaften Vorhersage von Transportpfaden und Stoffumlagerungen auf verschiedenen Maßstabsebenen unter besonderer Berücksichtigung räumlich-zeitlicher Änderungen der Bodenfeuchte. Geosynthesis 10. Hannover.Google Scholar
  16. ESRI, 1995. ARC/INFO. Environmental Systems Research Institute, Inc. 1982–1995.Google Scholar
  17. Fagre D B, Peterson D L, Hessl A E, 2003. Taking the pulse of the mountains: Ecosystem response to climate variability. Climatic Change, 59: 263–282.CrossRefGoogle Scholar
  18. Fægri K, 1972. Geo-ökologische Probleme der Gebirge Skandinaviens. Erdwissenschaftliche Forschung IV, 98–106. Wiesbaden.Google Scholar
  19. Fleming M D, Chapin III F S, Cramer W et al., 2000. Geographic patterns and dynamics of alaskan climate interpolated from a sparse station record. Global Change Biology, 6: 49–58.CrossRefGoogle Scholar
  20. Fries T C E, 1913. Botanische Untersuchungen im nördlichsten Schweden. Vetenskapliga och praktiska undersøkningar i Lappland. Flora och Fauna 2. Uppsala.Google Scholar
  21. Geiger R, 1961. Das Klima der bodennahen Luftschicht. Ein Lehrbuch der Mikroklimatologie. Braunschweig.Google Scholar
  22. Gjærevoll O, 1956. The Plant Communities of the Scandinavian Alpine Snowbeds. Det Kong. Norske Vid. Selsk. Skr. 1. Trondheim.Google Scholar
  23. Gjærevoll O, 1990. Alpine plants. In: Berg RY, Fægri K, Gjærevoll O. Maps of Distribution of Norwegian Vascular Plants, Vol. II. Trondheim.Google Scholar
  24. Gottfried M, Pauli H, Reiter K et al., 1999. A fine-scaled predictive model for changes in species distribution patterns of high mountain plants induced by climate warming. Diversity and Distributions, 5: 241–251.CrossRefGoogle Scholar
  25. Guisan A, Theurillat J-P, 2000. Assessing alpine plant vulnerability to climate change: a modeling perspective. Integrated Assessment, 1: 307–320.CrossRefGoogle Scholar
  26. Holtmeier F-K, Broll G, 1992. The influence of tree islands and microtopography on pedological conditions in the forest-alpine tundra ecotone on Niwot Ridge, Colorado Front Range, U. S. A. Arctic and Alpine Research, 24: 216–228.CrossRefGoogle Scholar
  27. Jones H G, Pomeroy J W, Walker D A et al. (eds.), 2001. Snow Ecology: An Interdisciplinary Examination of Snow-Covered Ecosystems. Cambridge.Google Scholar
  28. Kalliola R, 1939. Pflanzensoziologische Untersuchungen in der alpinen Stufe Finnisch-Lapplands. Ann. Bot. Soc. Zoo.-Bot. Fenn. Vanamo. Tom. 13.Google Scholar
  29. Kaltenborn B P, 1999. Tourism in an Arctic Wilderness. Mountains of the World. Tourism and Sustainable Mountain Development. Mountain Agenda. Bern.Google Scholar
  30. Köhler B, Löffler J, Wundram D, 1994. Problems of local geoecovariance in the central Norwegian Mountains. Norwegian Journal of Geography, 48: 99–111.Google Scholar
  31. Körner C, 2003. Alpine Plant Life. Functional Plant Ecology of High Mountain Ecosystems. Berlin.Google Scholar
  32. Leser H, 1986. Arbeitstechnische und methodische Probleme geoökologischer Forschungen in Extremklimaten-unter Bezug auf Erfahrungen in Namib, Kalahari und Arktis. Geoökodynamik, 7: 275–304.Google Scholar
  33. Löffler J, 2000. High mountain ecosystems and landscape degradation in northern Norway. Mountain Research and Development, 20: 356–363.CrossRefGoogle Scholar
  34. Löffler J, 2002. Altitudinal changes of ecosystem dynamics in the central Norwegian High Mountains. Die Erde, 133: 155–186.Google Scholar
  35. Löffler J, 2003. Micro-climatic determination of vegetation patterns along topographical, altitudinal, and oceanic-continental gradients in the high mountains of Norway. Erdkunde, 57: 232–249.Google Scholar
  36. Löffler J, Pape R, 2004. Across-scale temperature modelling using a simple approach for the characterisation of high mountain ecosystem complexity. Erdkunde, 58: 331–348.Google Scholar
  37. Löffler J, 2005. Snow cover dynamics, soil moisture variability, and vegetation ecology in high mountain catchments of central Norway. Hydrological Processes, 19: 2385–2405.CrossRefGoogle Scholar
  38. Löffler J, Finch O-D, 2005. Spatio-temporal gradients between high mountain ecosystems of central Norway. Arctic, Antarctic, and Alpine Research, 37: 499–513.CrossRefGoogle Scholar
  39. Löffler J, Wundram D, 2003. Geoökologische Untersuchungen zur Prozessdynamik mittelnorwegischer Hochgebirgsökosysteme. Oldenburger Geoökologische Studien 2, Oldenburg.Google Scholar
  40. Löffler J, Pape R, Wundram D, 2006. The climatologic significance of topography, altitude and region in high mountains: a survey of oceanic-continental differentiations of the Scandes. Erdkunde, 60: 15–24.CrossRefGoogle Scholar
  41. Messerli B, Ives J D, 1997. Mountains of the World. A Global Priority. New York.Google Scholar
  42. Moen A, 1999. National Atlas of Norway: Vegetation. Norwegian Mapping Authority. Hønefoss.Google Scholar
  43. Mosimann T, 1985. Untersuchungen zur Funktion subarktischer und alpiner Geoökosysteme (Finnmark [Norwegen] und Schweizer Alpen). Physiogeographica 7, Basel.Google Scholar
  44. Nordhagen R, 1928. Die Vegetation und Flora des Sylenegebietes. Eine pflanzensoziologische Monographie. Skr. Norske vidensk.-akad. Mat.-naturvid. kl. 1927, 1, 1–612. Oslo.Google Scholar
  45. Potschin M, Wagner R, 1996. The hydrological and ecological situation of surface waters in a newly evolved terrestrial geosystem on Potter Peninsula, King George Island (Antarctica). Heidelberger Geogr. Arb. 104, Heidelberg, 496–515.Google Scholar
  46. Price M F, Barry R G, 1997. Climate change. In: Messerli B, J D Ives (eds.), Mountains of the World: A Global Priority. New York, 409–445.Google Scholar
  47. Rempfler A, 1989. Boden und Schnee als Speicher im Wasser-und Nährstoffhaushalt hocharktischer Geosysteme (Raum Ny Ålesund, Brøggerhalvøya, Nordwestspitzbergen). Materialien zur Physiogeographie 11. Basel.Google Scholar
  48. Rosswall T, Heal O W (eds.), 1975. Structure and Function of Tundra Ecosystems. Ecological Bulletin, 20. Stockholm.Google Scholar
  49. Steinhardt U, Volk M, 2002. The investigation of water and matter balance on the meso-landscape scale: a hierarchical approach for landscape research. Landscape Ecology, 17: 1–12.CrossRefGoogle Scholar
  50. Tranquilini W, 1964. The physiology of plants at high altitude. Annual Review of Plant Physiology, 15: 345–362.CrossRefGoogle Scholar
  51. Tranquilini W, 1979. Physiological Ecology of the Alpine Timberline. Berlin.Google Scholar
  52. Vestergren T, 1902. Om den olikformiga snöbetäkningens inflytande på vegetationen i Sarekfjällen. Botanisker Notiser, 1902: 241–268.Google Scholar
  53. Walther G-R, Post E, Convey P et al., 2002. Ecological responses to recent climate change. Nature, 416: 389–395.CrossRefGoogle Scholar
  54. Wielgolaski F E (ed.), 1975. Fennoscandian Tundra Ecosystems. Part 1: Plants and Microorganisms. Ecolological Studies 16. Berlin.Google Scholar
  55. Wielgolaski F E (ed.), 1998. Polar and Alpine Tundra. Ecosystems of the World 3. Amsterdam.Google Scholar
  56. Wundram D, 2003. Die Bedeutung des Temperaturhaushalts für die Prozessdynamik mittelnorwegischer Hochgebirgsökosysteme. Dissertation, Bibliotheks-und Informationssystem. Universität Oldenburg.Google Scholar

Copyright information

© Science in China Press 2007

Authors and Affiliations

  • Jörg Löffler
    • 1
  1. 1.Department of GeographyUniversity of BonnBonnGermany

Personalised recommendations