Skip to main content
Log in

Advantages and limitations of an α-plasticity model for sand

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

The stress–strain response of sand was observed to depend on its material state, i.e., pressure and density. Successful modelling of such state-dependent response of sand relied on the correct representation of its state-dependent stress–dilatancy behaviour. In this study, an improved fractional-order \(\left( \alpha \right)\) plasticity model for sands with a wide range of initial void ratios and pressures is proposed, based on a state-dependent fractional-order plastic flow rule and a modified yielding surface. Potential positive performances and negative limitations of the proposed approach in terms of the critical state of sand are discussed, based on the simulations of a series of drained and undrained triaxial tests of different sands. It can be found that unlike previous fractional models, the developed model can reasonably simulate the key features, e.g., strain softening/hardening, volumetric dilation/contraction, liquefaction, quasi-steady-state flow as well as steady-state flow, of sand for a wide range of initial states. However, due to typical forms of the critical-state lines being used, negative performances of the fractional approach could occur when simulating the undrained behaviour of very loose sand and the drained behaviour of very dense sand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Agrawal OP (2007) Fractional variational calculus in terms of Riesz fractional derivatives. J Phys A Math Theor 40(24):6287–6303

    MathSciNet  MATH  Google Scholar 

  2. Alipour MJ, Lashkari A (2018) Sand instability under constant shear drained stress path. Int J Solids Struct 150:66–82. https://doi.org/10.1016/j.ijsolstr.2018.06.003

    Google Scholar 

  3. Azizi A (2009) Experimental study and modeling behavior of granular materials in constant deviatoric stress loading. Amirkabir University of Technology, Iran

  4. Bandini V, Coop MR (2011) The influence of particle breakage on the location of the critical state line of sands. Soils Found 51(4):591–600

    Google Scholar 

  5. Bardet JP (1986) Bounding surface plasticity model for sands. J Eng Mech 112(11):1198–1217. https://doi.org/10.1061/(ASCE)0733-9399(1986)112:11(1198)

    Google Scholar 

  6. Been K, Jefferies MG (1985) A state parameter for sands. Géotechnique 35(2):99–112. https://doi.org/10.1016/0148-9062(85)90263-3

    Google Scholar 

  7. Been K, Jefferies MG (2004) Stress dilatancy in very loose sand. Can Geotech J 41(5):972–989. https://doi.org/10.1139/t04-038

    Google Scholar 

  8. Caputo M (1967) Linear models of dissipation whose Q is almost frequency independent—II. Geophys J Int 13(5):529–539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x

    Google Scholar 

  9. Caputo M, Fabrizio M (2015) Damage and fatigue described by a fractional derivative model. J Comput Phys 293:400–408. https://doi.org/10.1016/j.jcp.2014.11.012

    MathSciNet  MATH  Google Scholar 

  10. Cen WJ, Luo JR, Bauer E, Zhang WD (2018) Generalized plasticity model for sand with enhanced state parameters. J Eng Mech 144(12):04018108. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001534

    Google Scholar 

  11. Choo J (2018) Mohr–Coulomb plasticity for sands incorporating density effects without parameter calibration. Int J Numer Anal Methods Geomech. https://doi.org/10.1002/nag.2851

    Google Scholar 

  12. Ciantia MO, Arroyo M, O’Sullivan C, Gens A, Liu T (2018) Grading evolution and critical state in a discrete numerical model of Fontainebleau sand. Géotechnique. https://doi.org/10.1680/jgeot.17.p.023

    Google Scholar 

  13. Dafalias YF, Manzari MT (2004) Simple plasticity sand model accounting for fabric change effects. J Eng Mech 130(6):622–634. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:6(622)

    Google Scholar 

  14. Eslami MM, Pradel D, Brandenberg SJ (2018) Experimental mapping of elastoplastic surfaces for sand using undrained perturbations. Soils Found 58(1):160–171. https://doi.org/10.1016/j.sandf.2017.12.004

    Google Scholar 

  15. Feia S, Sulem J, Canou J, Ghabezloo S, Clain X (2014) Changes in permeability of sand during triaxial loading: effect of fine particles production. Acta Geotech 1:19. https://doi.org/10.1007/s11440-014-0351-y

    Google Scholar 

  16. Gajo A, Muir Wood D (1999) A kinematic hardening constitutive model for sands: the multiaxial formulation. Int J Numer Anal Methods Geomech 23(9):925–965. https://doi.org/10.1002/(SICI)1096-9853(19990810)23:9%3c925:AID-NAG19%3e3.0.CO;2-M

    MATH  Google Scholar 

  17. Gajo A, Muir Wood D (1999) SevernTrent sand: a kinematic-hardening constitutive model: the q − p formulation. Géotechnique 49(5):595–614

    MATH  Google Scholar 

  18. Golchin A, Lashkari A (2014) A critical state sand model with elastic–plastic coupling. Int J Solids Struct 51(15):2807–2825. https://doi.org/10.1016/j.ijsolstr.2014.03.032

    Google Scholar 

  19. Heidarzadeh H, Oliaei M (2018) Development of a generalized model using a new plastic modulus based on bounding surface plasticity. Acta Geotech 13(4):925–941. https://doi.org/10.1007/s11440-017-0599-0

    Google Scholar 

  20. Ishihara K, Tatsuoka F, Yasuda S (1975) Undrained deformation and liquefaction of sand under cyclic stresses. Soils Found 15(1):29–44. https://doi.org/10.3208/sandf1972.15.29

    Google Scholar 

  21. Jin Y, Wu Z, Yin Z, Shen JS (2017) Estimation of critical state-related formula in advanced constitutive modeling of granular material. Acta Geotech 12(6):1329–1351. https://doi.org/10.1007/s11440-017-0586-5

    Google Scholar 

  22. Jocković S, Vukićević M (2017) Bounding surface model for overconsolidated clays with new state parameter formulation of hardening rule. Comput Geotech 83:16–29. https://doi.org/10.1016/j.compgeo.2016.10.013

    Google Scholar 

  23. Kan M, Taiebat H, Khalili N (2014) Simplified mapping rule for bounding surface simulation of complex loading paths in granular materials. Int J Geomech 14(2):239–253. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000307

    Google Scholar 

  24. Kang X, Xia Z, Chen R, Ge L, Liu X (2019) The critical state and steady state of sand: a literature review. Mar Georesour Geotechnol 37:1–14

    Google Scholar 

  25. Khalili N, Habte MA, Valliappan S (2005) A bounding surface plasticity model for cyclic loading of granular soils. Int J Numer Methods Eng 63(14):1939–1960. https://doi.org/10.1002/nme.1351

    MATH  Google Scholar 

  26. Lade PV, Nelson RB, Ito YM (1987) Nonassociated flow and stability of granular materials. J Eng Mech 113(9):1302–1318. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:9(1302)

    Google Scholar 

  27. Lee KL, Seed HB (1967) Drained strength characteristics of sands. J Soil Mech Found Div 93(6):117–141

    Google Scholar 

  28. Li X (2002) A sand model with state-dependent dilatancy. Géotechnique 52(3):173–186

    Google Scholar 

  29. Li X, Dafalias Y (2000) Dilatancy for cohesionless soils. Géotechnique 50(4):449–460. https://doi.org/10.1680/geot.2000.50.4.449

    Google Scholar 

  30. Li X, Wang Y (1998) Linear representation of steady-state line for sand. J Geotech Geoenviron Eng 124(12):1215–1217. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:12(1215)

    Google Scholar 

  31. Liu M, Gao Y (2016) Constitutive modeling of coarse-grained materials incorporating the effect of particle breakage on critical state behavior in a framework of generalized plasticity. Int J Geomech 17(5):04016113. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000759

    Google Scholar 

  32. Liu HB, Zou DG (2013) Associated generalized plasticity framework for modeling gravelly soils considering particle breakage. J Eng Mech 139(5):606–615. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000513

    Google Scholar 

  33. Liu HB, Zou DG, Liu JM (2014) Constitutive modeling of dense gravelly soils subjected to cyclic loading. Int J Numer Anal Methods Geomech 38(14):1503–1518. https://doi.org/10.1002/nag.2269

    Google Scholar 

  34. Liu M, Zhang Y, Zhu H (2017) 3D elastoplastic model for crushable soils with explicit formulation of particle crushing. J Eng Mech 143(12):04017140. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001361

    Google Scholar 

  35. Lu D, Liang J, Du X, Ma C, Gao Z (2019) Fractional elastoplastic constitutive model for soils based on a novel 3D fractional plastic flow rule. Comput Geotech 105:277–290. https://doi.org/10.1016/j.compgeo.2018.10.004

    Google Scholar 

  36. Lü X, Huang M, Andrade JE (2018) Modeling the static liquefaction of unsaturated sand containing gas bubbles. Soils Found 58(1):122–133. https://doi.org/10.1016/j.sandf.2017.11.008

    Google Scholar 

  37. McDowell G (2002) A simple non-associated flow model for sand. Granul Matter 4(2):65–69

    Google Scholar 

  38. McDowell G, de Bono JP (2013) On the micro mechanics of one-dimensional normal compression. Géotechnique 63(11):895–908

    Google Scholar 

  39. McDowell GR, Yue P, de Bono JP (2015) Micro mechanics of critical states for isotropically overconsolidated sand. Powder Technol 283:440–446. https://doi.org/10.1016/j.powtec.2015.05.043

    Google Scholar 

  40. Meghachou M (1992) Stabilitédes sables laches: essais et modélisations. Université d’Oran

  41. Pastor M, Zienkiewicz OC, Chan AHC (1990) Generalized plasticity and the modelling of soil behaviour. Int J Numer Anal Methods Geomech 14(3):151–190. https://doi.org/10.1002/nag.1610140302

    MATH  Google Scholar 

  42. Pedroso DM, Sheng DC, Zhao JD (2009) The concept of reference curves for constitutive modeling in soil mechanics. Comput Geotech 36(1):149–165

    Google Scholar 

  43. Pestana JM, Whittle AJ (1995) Compression model for cohesionless soils. Géotechnique 45(4):611–631

    Google Scholar 

  44. Podlubny I (1998) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, vol 198. Mathematics in science and engineering. Academic Press, San Diego

    Google Scholar 

  45. Russell A, Khalili N (2002) Drained cavity expansion in sands exhibiting particle crushing. Int J Numer Anal Methods Geomech 26(4):323–340

    MATH  Google Scholar 

  46. Russell AR, Khalili N (2004) A bounding surface plasticity model for sands exhibiting particle crushing. Can Geotech J 41(6):1179–1192

    Google Scholar 

  47. Russell A, Khalili N (2006) A unified bounding surface plasticity model for unsaturated soils. Int J Numer Anal Methods Geomech 30(3):181–212

    MATH  Google Scholar 

  48. Schofield A, Wroth P (1968) Critical state soil mechanics. McGraw-Hill, New York

    Google Scholar 

  49. Shi XS, Herle I (2017) Numerical simulation of lumpy soils using a hypoplastic model. Acta Geotech 12(2):349–363. https://doi.org/10.1007/s11440-016-0447-7

    Google Scholar 

  50. Shi XS, Herle I, Muir Wood D (2017) A consolidation model for lumpy composite soils in open-pit mining. Géotechnique 68(3):189–204. https://doi.org/10.1680/jgeot.16.P.054

    Google Scholar 

  51. Shi XS, Herle I, Yin J (2018) Laboratory study of the shear strength and state boundary surface of a natural lumpy soil. J Geotech Geoenviron Eng 144(12):04018093. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001987

    Google Scholar 

  52. Sumelka W (2014) Fractional viscoplasticity. Mech Res Commun 56:31–36. https://doi.org/10.1016/j.mechrescom.2013.11.005

    Google Scholar 

  53. Sumelka W, Nowak M (2016) Non-normality and induced plastic anisotropy under fractional plastic flow rule: a numerical study. Int J Numer Anal Methods Geomech 40(5):651–675. https://doi.org/10.1002/nag.2421

    Google Scholar 

  54. Sumelka W, Nowak M (2018) On a general numerical scheme for the fractional plastic flow rule. Mech Mater 116:120–129. https://doi.org/10.1016/j.mechmat.2017.02.005

    Google Scholar 

  55. Sun Y, Sumelka W (2019) State-dependent fractional plasticity model for the true triaxial behaviour of granular soil. Arch Mech 71(1):23–47. https://doi.org/10.24423/aom.3084

    MathSciNet  MATH  Google Scholar 

  56. Sun Y, Sumelka W (2019) Fractional viscoplastic model for soils under compression. Acta Mech. https://doi.org/10.1007/s00707-019-02466-z

    MathSciNet  MATH  Google Scholar 

  57. Sun Y, Xiao Y (2017) Fractional order plasticity model for granular soils subjected to monotonic triaxial compression. Int J Solids Struct 118–119:224–234. https://doi.org/10.1016/j.ijsolstr.2017.03.005

    Google Scholar 

  58. Sun Y, Indraratna B, Carter JP, Marchant T, Nimbalkar S (2017) Application of fractional calculus in modelling ballast deformation under cyclic loading. Comput Geotech 82:16–30. https://doi.org/10.1016/j.compgeo.2016.09.010

    Google Scholar 

  59. Sun Y, Gao Y, Zhu Q (2018) Fractional order plasticity modelling of state-dependent behaviour of granular soils without using plastic potential. Int J Plasticity 102:53–69. https://doi.org/10.1016/j.ijplas.2017.12.001

    Google Scholar 

  60. Sun Y, Chen C, Song S (2018) Generalized fractional flow rule and its modelling of the monotonic and cyclic behavior of granular soils. In: Zhou A, Tao J, Gu X, Hu L (eds) Proceedings of GeoShanghai 2018 international conference: fundamentals of soil behaviours, Singapore, 2018//2018. Springer, Singapore, pp 299–307

    Google Scholar 

  61. Sun Y, Gao Y, Shen Y (2019) Mathematical aspect of the state-dependent stress-dilatancy of granular soil under triaxial loading. Géotechnique 69(2):158–165. https://doi.org/10.1680/jgeot.17.t.029

    Google Scholar 

  62. Sun Y, Gao Y, Song S, Chen C (2019) Three-dimensional state-dependent fractional plasticity model for soils. Int J Geomech. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001353

    Google Scholar 

  63. Taiebat M, Jeremić B, Dafalias YF, Kaynia AM, Cheng Z (2010) Propagation of seismic waves through liquefied soils. Soil Dyn Earthq Eng 30(4):236–257. https://doi.org/10.1016/j.soildyn.2009.11.003

    Google Scholar 

  64. Verdugo R, Ishihara K (1996) The steady state of sandy soils. Soils Found 36(2):81–91. https://doi.org/10.3208/sandf.36.2_81

    Google Scholar 

  65. Wan R, Guo P (1998) A simple constitutive model for granular soils: modified stress-dilatancy approach. Comput Geotech 22(2):109–133. https://doi.org/10.1016/s0266-352x(98)00004-4

    Google Scholar 

  66. Wan R, Nicot F, Darve F (2009) Micromechanical formulation of stress dilatancy as a flow rule in plasticity of granular materials. J Eng Mech 136(5):589–598. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000105

    Google Scholar 

  67. Wang Z, Dafalias Y, Li X, Makdisi F (2002) State pressure index for modeling sand behavior. J Geotech Geoenviron Eng 128(6):511–519. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:6(511)

    Google Scholar 

  68. Xiao Y, Liu H (2016) Elastoplastic constitutive model for rockfill materials considering particle breakage. Int J Geomech 17(1):04016041. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000681

    Google Scholar 

  69. Xiao Y, Liu H, Chen Y, Jiang J (2014) Bounding surface plasticity model incorporating the state pressure index for rockfill materials. J Eng Mech 140(11):04014087. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000802

    Google Scholar 

  70. Xiao Y, Liu H, Chen Y, Jiang J (2014) Bounding surface model for rockfill materials dependent on density and pressure under triaxial stress conditions. J Eng Mech 140(4):04014002. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000702

    Google Scholar 

  71. Xiao Y, Sun Y, Yin F, Liu H, Xiang J (2017) Constitutive modeling for transparent granular soils. Int J Geomech 17(7):04016150. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000857

    Google Scholar 

  72. Xiao Y, Sun Z, Stuedlein AW, Wang C, Wu Z, Zhang Z (2019) Bounding surface plasticity model for stress–strain and grain-crushing behaviors of rockfill materials. Geosci Front. https://doi.org/10.1016/j.gsf.2018.1010.1010

    Google Scholar 

  73. Yao Y, Wang N (2014) Transformed stress method for generalizing soil constitutive models. J Eng Mech 140(3):614–629. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000685

    Google Scholar 

  74. Yao YP, Sun DA, Luo T (2004) A critical state model for sands dependent on stress and density. Int J Numer Anal Methods Geomech 28(4):323–337. https://doi.org/10.1002/nag.340

    MATH  Google Scholar 

  75. Yao YP, Hou W, Zhou AN (2009) UH model: three-dimensional unified hardening model for overconsolidated clays. Géotechnique 59(5):451–469. https://doi.org/10.1680/geot.2007.00029

    Google Scholar 

  76. Yao YP, Kong L, Zhou A, Yin J (2014) Time-dependent unified hardening model: three-dimensional elastoviscoplastic constitutive model for clays. J Eng Mech 141(6):04014162. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000885

    Google Scholar 

  77. Yao YP, Liu L, Luo T, Tian Y, Zhang JM (2019) Unified hardening (UH) model for clays and sands. Comput Geotech 110:326–343. https://doi.org/10.1016/j.compgeo.2019.02.024

    Google Scholar 

  78. Yin Z, Wu Z, Hicher P (2018) Modeling monotonic and cyclic behavior of granular materials by exponential constitutive function. J Eng Mech 144(4):04018014. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001437

    Google Scholar 

  79. Yu F (2017) Particle breakage and the critical state of sands. Géotechnique 67(8):713–719. https://doi.org/10.1680/jgeot.15.P.250

    Google Scholar 

Download references

Acknowledgements

The first author would like to appreciate Prof. Wen Chen for his lifelong inspiration. The financial support provided by the National Key R&D Program of China (2016YFC0800205) National Natural Science Foundation of China (Grant Nos. 41630638, 51890912, 51808191), the National Key Basic Research Program of China (“973” Program) (Grant No. 2015CB057901) and the Humboldt Research Foundation, Germany, is appreciated. The second author also acknowledges the support of the National Science Centre, Poland, under Grant No. 2017/27/B/ST8/00351.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufeng Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In order to derive Eq. (17), the following analytical solutions of the power-law functions, \((\sigma^{\prime} - \sigma^{\prime}_{{\mathrm{c}}} )^{\mu }\) and \((\sigma^{\prime}_{{\mathrm{c}}} - \sigma^{\prime})^{\mu }\), are needed:

$${}_{{\sigma^{\prime}_{{\mathrm{c}}} }}D_{{\sigma^{\prime}}}^{\alpha } (\sigma^{\prime} - \sigma^{\prime}_{{\mathrm{c}}} )^{\mu } { = }\frac{\varGamma (1 + \mu )}{\varGamma (1 + \mu - \alpha )}(\sigma^{\prime} - \sigma^{\prime}_{{\mathrm{c}}} )^{\mu - \alpha }$$
(25)
$${}_{{\sigma^{\prime}}}D_{{\sigma^{\prime}_{{\mathrm{c}}} }}^{\alpha } (\sigma^{\prime}_{{\mathrm{c}}} - \sigma^{\prime})^{\mu } { = }\frac{\varGamma (1 + \mu )}{\varGamma (1 + \mu - \alpha )}(\sigma^{\prime}_{{\mathrm{c}}} - \sigma^{\prime})^{\mu - \alpha }$$
(26)

where \(\mu\) is the power index. Details for deriving Eqs. (25) and (26) can be found in [44] and thus not repeated here for simplicity. Accordingly, Eq. (14) with \(\beta = 0\) should be rearranged as:

$$\begin{aligned} f & = (q - q_{{\mathrm{c}}} )^{2} + 2q_{{\mathrm{c}}} (q - q_{{\mathrm{c}}} ) \\ & \quad + M_{{\mathrm{c}}}^{2} (p^{\prime} - p^{\prime}_{{\mathrm{c}}} )^{2} + 2M_{{\mathrm{c}}}^{2} p^{\prime}_{{\mathrm{c}}} (p^{\prime} - p^{\prime}_{{\mathrm{c}}} ) \\ & \quad - M_{{\mathrm{c}}}^{2} p^{\prime}_{0} (p^{\prime} - p^{\prime}_{{\mathrm{c}}} ) + q_{{\mathrm{c}}}^{2} + M_{{\mathrm{c}}}^{2} p_{{\mathrm{c}}}^{\prime2} - M_{{\mathrm{c}}}^{2} p^{\prime}_{0} p^{\prime}_{{\mathrm{c}}} \\ \end{aligned}$$
(27)

and

$$\begin{aligned} f & = (q_{{\mathrm{c}}} - q)^{2} - 2q_{{\mathrm{c}}} (q_{{\mathrm{c}}} - q) \\ {\kern 1pt} & \quad + M_{{\mathrm{c}}}^{2} (p^{\prime}_{{\mathrm{c}}} - p^{\prime})^{2} - 2M_{{\mathrm{c}}}^{2} p^{\prime}_{{\mathrm{c}}} (p^{\prime}_{{\mathrm{c}}} - p^{\prime}) \\ & \quad + M_{{\mathrm{c}}}^{2} p^{\prime}_{0} (p^{\prime}_{{\mathrm{c}}} - p^{\prime}) + q_{{\mathrm{c}}}^{2} + M_{{\mathrm{c}}}^{2} p_{{\mathrm{c}}}^{\prime2} - M_{{\mathrm{c}}}^{2} p^{\prime}_{0} p^{\prime}_{{\mathrm{c}}} \\ \end{aligned}$$
(28)

Then, substituting Eqs. (27) and (28) into Eqs. (25) and (26), respectively, one has:

$$d_{{\mathrm{g}}} = - \frac{{{}_{{p^{\prime}}}D_{{p^{\prime}_{{\mathrm{c}}} }}^{\alpha } f(p^{\prime})}}{{{}_{{q_{{\mathrm{c}}} }}D_{q}^{\alpha } f(q)}} = M_{{\mathrm{c}}}^{2} \frac{{(p^{\prime} - p^{\prime}_{{\mathrm{c}}} ) + (2 - \alpha )(p^{\prime}_{{\mathrm{c}}} - p^{\prime}_{0} /2)}}{{(q - q_{{\mathrm{c}}} ) + (2 - \alpha )q_{{\mathrm{c}}} }}\left[ {\frac{{p^{\prime}_{{\mathrm{c}}} - p^{\prime}}}{{q - q_{{\mathrm{c}}} }}} \right]^{1 - \alpha }$$
(29)
$$d_{{\mathrm{g}}} = - \frac{{{}_{{p^{\prime}_{{\mathrm{c}}} }}D_{{p^{\prime}}}^{\alpha } f(p^{\prime})}}{{{}_{q}D_{{q_{{\mathrm{c}}} }}^{\alpha } f(q)}} = M_{{\mathrm{c}}}^{2} \frac{{(p^{\prime} - p^{\prime}_{{\mathrm{c}}} ) + (2 - \alpha )(p^{\prime}_{{\mathrm{c}}} - p^{\prime}_{0} /2)}}{{(q - q_{{\mathrm{c}}} ) + (2 - \alpha )q_{{\mathrm{c}}} }}\left[ {\frac{{p^{\prime} - p^{\prime}_{{\mathrm{c}}} }}{{q_{{\mathrm{c}}} - q}}} \right]^{1 - \alpha }$$
(30)

Further substituting Eq. (2) into Eqs. (29) and (30), a unique stress–dilatancy equation is obtained:

$$d_{{\mathrm{g}}} = M_{{\mathrm{c}}}^{1 + \alpha } \frac{{(p^{\prime} - p^{\prime}_{{\mathrm{c}}} ) + (2 - \alpha )(p^{\prime}_{{\mathrm{c}}} - p^{\prime}_{0} /2)}}{{(q - q_{{\mathrm{c}}} ) + (2 - \alpha )q_{{\mathrm{c}}} }}.$$
(31)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Sumelka, W. & Gao, Y. Advantages and limitations of an α-plasticity model for sand. Acta Geotech. 15, 1423–1437 (2020). https://doi.org/10.1007/s11440-019-00877-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-019-00877-9

Keywords

Navigation