Advertisement

Acta Geotechnica

, Volume 14, Issue 6, pp 1669–1684 | Cite as

Effect of micro and macro parameters in 3D modeling of grain crushing

  • François Nader
  • Claire SilvaniEmail author
  • Irini Djeran-Maigre
Research Paper
  • 221 Downloads

Abstract

Coarse granular materials exhibit important grain breakage in civil engineering structures, making it more complicated to predict the settlement and collapse of structures. A three-dimensional numerical model is presented using the discrete element method (Non-Smooth Contact Dynamics method). Polyhedral grains are generated, divided into tetrahedral subgrains and glued together using a cohesive law. Samples of breakable grains are subjected to oedometric compression where grains interact via contact and friction processes. Multiple geometrical and physical parameters are tested to analyze the response on the macroscopic and microscopic scales. The tendencies found show the ability of the model to represent the real material’s behavior.

Keywords

3D grain breakage DEM Grain size distribution Granular materials Oedometric compression Polyhedral grains 

Notes

Acknowledgements

Authors thank Guilhem Mollon of LaMCoS Lyon for the advices and fruitful discussions and Frédéric Dubois of LMGC Montpellier for the assistance in running the LMGC\(^{90}\) software. Authors also thank Christophe Pera of the University of Lyon for the technical assistance that allowed the use of the P2CHPD computation server. Authors also want to thank the editor and the reviewers for their careful reading, comments, guidance and for the relevant references given.

References

  1. 1.
    Åström J, Herrmann H (1998) Fragmentation of grains in a two-dimensional packing. Eur Phys J B Condens Matter Complex Syst 5(3):551–554Google Scholar
  2. 2.
    Azéma E, Linero S, Estrada N, Lizcano A (2017) Shear strength and microstructure of polydisperse packings: the effect of size span and shape of particle size distribution. Phys Rev E 96(2):022902Google Scholar
  3. 3.
    Cantor D, Azéma E, Sornay P, Radjaï F (2016) Three-dimensional bonded-cell model for grain fragmentation. Comput Particle Mech 4:1–10Google Scholar
  4. 4.
    Cantor D, Estrada N, Azéma E (2015) Split-cell method for grain fragmentation. Comput Geotech 67:150–156Google Scholar
  5. 5.
    Casini F, Viggiani G, Springman S (2013) Breakage of an artificial crushable material under loading. Granul Matter 15(5):661–673Google Scholar
  6. 6.
    Cavarretta I, Coop M, O’Sullivan C (2010) The influence of particle characteristics on the behaviour of coarse grained soils. Géotechnique 60(6):413–423Google Scholar
  7. 7.
    Cheng Y, Nakata Y, Bolton M (2003) Discrete element simulation of crushable soil. Géotechnique 53(7):633–641Google Scholar
  8. 8.
    Cho G, Dodds J, Santamarina J (2006) Particle shape effects on packing density, stiffness and strength: natural and crushed sands. J Geotech Geoenviron Eng 132(5):591–602Google Scholar
  9. 9.
    Ciantia MO, Arroyo M, O’Sullivan C, Gens A (2019) Micromechanical inspection of incremental behaviour of crushable soils. Acta Geotech.  https://doi.org/10.1007/s11440-019-00802-0 CrossRefGoogle Scholar
  10. 10.
    Cundall P (1988) Formulation of a three-dimensional distinct element model—part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks. Int J Rock Mech Min Sci Geomech Abstr 25(3):107–116Google Scholar
  11. 11.
    de Bono J, McDowell G (2014) Discrete element modelling of one-dimensional compression of cemented sand. Granul Matter 16(1):79–90Google Scholar
  12. 12.
    de Bono J, McDowell G (2014) DEM of triaxial tests on crushable sand. Granul Matter 16(4):551–562Google Scholar
  13. 13.
    De Souza J (1958) Compressibility of sand at high pressure. MS thesis, Massachusetts Institute of Technology, pp 63–64Google Scholar
  14. 14.
    Einav I (2007) Breakage mechanics—part I: theory. J Mech Phys Solids 55(6):1274–1297MathSciNetzbMATHGoogle Scholar
  15. 15.
    Estrada N (2016) Effects of grain size distribution on the packing fraction and shear strength of frictionless disk packings. Phys Rev E 94(6):062903Google Scholar
  16. 16.
    Frossard E, Hu W, Dano C, Hicher P (2012) Rockfill shear strength evaluation: a rational method based on size effects. Géotechnique 62(5):415–428Google Scholar
  17. 17.
    Griffith A (1921) The phenomena of rupture and flow in solids. Philos Trans R Soc Lond A Math Phys Eng Sci 221:163–198Google Scholar
  18. 18.
    Guo P, Su X (2007) Shear strength, interparticle locking, and dilatancy of granular materials. Can Geotech J 44(5):579–591Google Scholar
  19. 19.
    Gupta A (2016) Effects of particle size and confining pressure on breakage factor of rockfill materials using medium triaxial test. J Rock Mech Geotech Eng 8(3):378–388Google Scholar
  20. 20.
    Hardin B (1985) Crushing of soil particles. J Geotech Eng 111(10):1177–1192Google Scholar
  21. 21.
    Hendron A (1963) The behavior of sand in one-dimensional compression. Ph.D. thesisGoogle Scholar
  22. 22.
    Hicher P, Chang C (2005) Evaluation of two homogenization techniques for modeling the elastic behavior of granular materials. J Eng Mech 131(11):1184–1194Google Scholar
  23. 23.
    Jaeger J (1967) Failure of rocks under tensile conditions. Int J Rock Mech Min Sci Geomech Abstr 4(2):219–227Google Scholar
  24. 24.
    Jean M (1999) The non-smooth contact dynamics method. Comput Methods Appl Mech Eng 177(3):235–257MathSciNetzbMATHGoogle Scholar
  25. 25.
    Jean M, Moreau J (1992) Unilaterality and dry friction in the dynamics of rigid body collections. In: Proceedings of contact mechanics international symposium, vol 1, pp 31–48. LausanneGoogle Scholar
  26. 26.
    Jia Y, Xu B, Chi S, Xiang B, Zhou Y (2017) Research on the particle breakage of rockfill materials during triaxial tests. Int J Geomech 17(10):04017085Google Scholar
  27. 27.
    Jiang M, Yang Z, Barreto D, Xie Y (2018) The influence of particle-size distribution on critical state behavior of spherical and non-spherical particle assemblies. Granul Matter 20(4):80Google Scholar
  28. 28.
    Johannesson P, Tohlang S (2007) Lessons learned from Mohale. Int Water Power Dam Constr 59(8):16–25Google Scholar
  29. 29.
    Lade P, Yamamuro J, Bopp P (1996) Significance of particle crushing in granular materials. J Geotech Eng 122(4):309–316Google Scholar
  30. 30.
    Lee D (1992) The angles of friction of granular fills. Ph.D. thesis, University of CambridgeGoogle Scholar
  31. 31.
    Li G (2013) Étude de l’influence de l’étalement granulométrique sur le comportement mécanique des matériaux granulaires. Ph.D. thesis, Ecole Centrale de NantesGoogle Scholar
  32. 32.
    Lobo-Guerrero S, Vallejo L (2005) Crushing a weak granular material: experimental numerical analyses. Géotechnique 55(3):245–249Google Scholar
  33. 33.
    Ma G, Regueiro RA, Zhou W, Wang Q, Liu J (2018) Role of particle crushing on particle kinematics and shear banding in granular materials. Acta Geotech 13(3):601–618Google Scholar
  34. 34.
    Marsal R (1973) Mechanical properties of rockfill. In: Hirschfeld RC, Poulos SJ (eds) Embankment dam engineering. Casagrande volume. Wiley, New YorkGoogle Scholar
  35. 35.
    McDowell G, Bolton M (1998) On the micromechanics of crushable aggregates. Géotechnique 48(5):667–679Google Scholar
  36. 36.
    McDowell G, Bolton M, Robertson D (1996) The fractal crushing of granular materials. J Mech Phys Solids 44(12):2079–2101Google Scholar
  37. 37.
    McDowell G, De Bono J (2013) On the micro mechanics of one-dimensional normal compression. Géotechnique 63:895–908Google Scholar
  38. 38.
    Mollon G, Zhao J (2013) Generating realistic 3D sand particles using Fourier descriptors. Granul Matter 15(1):95–108Google Scholar
  39. 39.
    Moreau J (1988) Unilateral contact and dry friction in finite freedom dynamics. Springer, ViennazbMATHGoogle Scholar
  40. 40.
    Nader F (2017) Modélisation de la rupture 3D des grains polyédriques par éléments discrets. Ph.D. thesis, INSA LyonGoogle Scholar
  41. 41.
    Nader F, Silvani C, Djeran-Maigre I (2017) Grain breakage under uniaxial compression using a three-dimensional discrete element method. Granul Matter 19(3):53Google Scholar
  42. 42.
    Nakata A, Hyde M, Hyodo H (1999) A probabilistic approach to sand particle crushing in the triaxial test. Géotechnique 49(5):567–583Google Scholar
  43. 43.
    Nakata Y, Hyodo M, Hyde A, Kato Y, Murata H (2001) Microscopic particle crushing of sand subjected to high pressure one-dimensional compression. Soils Found 41(1):69–82Google Scholar
  44. 44.
    Ovalle C, Frossard E, Dano C, Hu W, Maiolino S, Hicher P (2014) The effect of size on the strength of coarse rock aggregates and large rockfill samples through experimental data. Acta Mech 225(8):2199zbMATHGoogle Scholar
  45. 45.
    Pestana J, Whittle A (1995) Compression model for cohesionless soils. Géotechnique 45(4):611–631Google Scholar
  46. 46.
    Potapov A, Campbell C (1996) A three-dimensional simulation of brittle solid fracture. Int J Modern Phys C 7(05):717–729Google Scholar
  47. 47.
    Shin H, Santamarina J (2012) Role of particle angularity on the mechanical behavior of granular mixtures. J Geotech Geoenviron Eng 139(2):353–355Google Scholar
  48. 48.
    Silvani C, Désoyer T, Bonelli S (2009) Discrete modelling of time-dependent rockfill behaviour. Int J Numer Anal Methods Geomech 33(5):665–685zbMATHGoogle Scholar
  49. 49.
    Taforel P (2012) Apport de la méthode des éléments discrets à la modélisation des maçonneries en contexte sismique: Vers une nouvelle approche de la vulnérabilité sismique. Ph.D. thesis, Université Montpellier II-Sciences et Techniques du LanguedocGoogle Scholar
  50. 50.
    Tsoungui O, Vallet D, Charmet J (1999) Numerical model of crushing of grains inside two-dimensional granular materials. Powder Technol 105(1):190–198Google Scholar
  51. 51.
    Varadarajan A, Sharma K, Abbas S, Dhawan A (2006) Constitutive model for rockfill materials and determination of material constants. Int J Geomech 6(4):226–237Google Scholar
  52. 52.
    Varadarajan A, Sharma K, Venkatachalam K, Gupta A (2003) Testing and modeling two rockfill materials. J Geotech Geoenviron Eng 129(3):206–218Google Scholar
  53. 53.
    Weibull W (1951) Wide applicability. J Appl Mech 18:293–297zbMATHGoogle Scholar
  54. 54.
    Xiao Y, Liu H, Chen Q, Ma Q, Xiang Y, Zheng Y (2017) Particle breakage and deformation of carbonate sands with wide range of densities during compression loading process. Acta Geotech 12(5):1177–1184Google Scholar
  55. 55.
    Xiao Y, Liu H, Chen Y, Zhang W (2014) Particle size effects in granular soils under true triaxial conditions. Geotechnique 64(8):667–672Google Scholar
  56. 56.
    Xiao Y, Liu H, Zhang W, Liu H, Yin F, Wang Y (2016) Testing and modeling of rockfill materials: a review. J Rock Mech Geotech Eng 8(3):415–422Google Scholar
  57. 57.
    Xiao Y, Long L, Matthew Evans T, Zhou H, Liu H, Stuedlein A (2019) Effect of particle shape on stress-dilatancy responses of medium-dense sands. J Geotech Geoenviron Eng 145(2):04018105Google Scholar
  58. 58.
    Xiao Y, Meng M, Daouadji A, Chen Q, Wu Z, Jiang X (2018) Effects of particle size on crushing and deformation behaviors of rockfill materials. Geosci Front.  https://doi.org/10.1016/j.gsf.2018.10.010 CrossRefGoogle Scholar
  59. 59.
    Yan W, Dong J (2011) Effect of particle grading on the response of an idealized granular assemblage. Int J Geomech 11(4):276–285Google Scholar
  60. 60.
    Yang J, Luo X (2018) The critical state friction angle of granular materials: does it depend on grading? Acta Geotech 13(3):535–547Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Univ. Lyon, INSA-Lyon, GEOMASVilleurbanne CedexFrance

Personalised recommendations