Advertisement

Acta Geotechnica

, Volume 14, Issue 6, pp 1821–1841 | Cite as

FE-based identification of pile–soil interactions from dynamic load tests to predict the axial bearing capacity

  • E. Heins
  • J. GrabeEmail author
Research Paper
  • 125 Downloads

Abstract

The static axial pile bearing capacity depends mainly on the developed pile–soil interaction. Hence, to determine a realistic and reliable ultimate pile bearing capacity, the pile–soil interaction needs to be identified and described precisely. One relevant field for this application is dynamic load tests (DLTs). During a DLT, the pile bearing capacity is deduced from measurements at the pile head. Current procedures of deriving the bearing capacity of open-ended piles from these measurements are lagging behind regarding the description of the pile–soil interaction for open-ended piles and the influence of the pore fluid response. Hence, a new technique based on the finite element method is developed, which captures the key aspects for DLT results correctly and is capable of deriving the static pile bearing capacity. The method is validated against dynamic and static load test data obtained from centrifuge tests on large diameter monopiles. An application to field test data of tubular steel piles is shown. The developed approach seems suitable to assess the static pile bearing capacity based on DLT measurements.

Keywords

Dynamic load test Finite element method Mathematical optimization Pile foundation Static bearing capacity 

Notes

Acknowledgements

The authors thank the Federal Institute for Material Research and Testing (BAM) for providing the field test data (investigated in connection with research grant FKZ 0325227 of the German Federal Ministry for Economic Affairs and Energy) and enabling the application of the newly developed FE approach to real measured field test data.

References

  1. 1.
    Abu-Farsakh MY, Haque MN, Tsai C (2017) A full-scale field study for performance evaluation of axially loaded large-diameter cylinder piles with pipe piles and PSC piles. Acta Geotech 12(4):753–772Google Scholar
  2. 2.
    Bruno D, Randolph MF (1999) Dynamic and static load testing of model piles driven into dense sand. J Geotech Geoenviron Eng 125(11):988–998CrossRefGoogle Scholar
  3. 3.
    De Nicola A, Randolph MF (1994) Development of a miniature pile driving actuator. In: Leung CF, Lee FH, Tan TS (eds) Proceedings of international conference on centrifuge modelling 1994, pp 473–478Google Scholar
  4. 4.
    EA-Pfähle (2012) Empfehlungen des Arbeitskreises “Pfähle”–EA-Pfähle der Deutschen Geschellschaft für Geotechnik (DGGT), 2nd edn. Ernst & Sohn, BerlinGoogle Scholar
  5. 5.
    Grabe J, Heins E (2017) Coupled deformation–seepage analysis of dynamic capacity tests on open-ended piles in saturated sand. Acta Geotech 12(1):211–223CrossRefGoogle Scholar
  6. 6.
    Hamann T, Grabe J (2013) A simple dynamic approach for the numerical modeling of soil as a two-phase material. Geotechnik 36(3):279–299CrossRefGoogle Scholar
  7. 7.
    Heins E (2018) Numerical based identification of the pile–soil interaction in terms of the axial pile bearing capacity. Ph.D. thesis, Veröffentlichungen des Instituts für Geotechnik und Baubetrieb der Technischen Universität Hamburg-Harburg, Heft 44, Hamburg, GermanyGoogle Scholar
  8. 8.
    Heins E, Bienen B, Randolph MF, Grabe J (2018) Effect of installation method on static and dynamic load test response for piles in sand. Int J Phys Model Geotech 18:1–23 Ahead of printGoogle Scholar
  9. 9.
    Karabeliov K, Cuellar P, Baeßler M (2017) Großmaßstäbliche zyklische Versuche zum Zugtragverhalten von gerammten Stahlrohrpfählen. In: Dietzel M, Kieffer S, Marte R, Schubert W, Schweiger HF (eds) Beiträge zum 32. Christan Veder Kolloquium—Zugelemente in der Geotechnik, Veröffentlichungen der Gruppe Geotechnik Graz der Technischen Universität Graz, Heft 56, pp 103–120Google Scholar
  10. 10.
    Kinzler S (2011) Zur Parameteridentifikation, Entwurfs- und Strukturoptimierung in der Geotechnik mittels numerischer Verfahren. Ph.D. thesis, Veröffentlichungen des Instituts für Geotechnik und Baubetrieb der Technischen Universität Hamburg-Harburg, Heft 23, Hamburg, GermanyGoogle Scholar
  11. 11.
    Kolymbas D (1991) Longitudinal impacts on piles. Soil Dyn Earthq Eng 10(5):264–270CrossRefGoogle Scholar
  12. 12.
    Niemunis A, Herle I (1997) Hypoplastic model for cohesionless soils with elastic strain range. Mech Cohes Frict Mater 2(4):279–299CrossRefGoogle Scholar
  13. 13.
    Paikowsky S, Chernauskaus LR (2008) Dynamic analysis of open ended pipe piles. In: Santos JA (ed) Proceedings of 8th international conference on the application of stress wave theory to piles in Lisbon, Portugal, IOS Press, pp 59–76Google Scholar
  14. 14.
    Randolph MF (2003) Science and empiricism in pile foundation design. Géotechnique 53(10):847–875CrossRefGoogle Scholar
  15. 15.
    Randolph MF, Deeks AJ (1992) Dynamic and static soil models for axial pile response. In: Barends FBJ (ed) Application of stress-wave theory to piles. Millpress, Rotterdam, pp 3–14Google Scholar
  16. 16.
    Rausche F, Likins G, Liang L, Hussein M (2010) Static and dynamic models for CAPWAP signal matching. In: Hussein MH, Anderson JB, Camp WM (eds) Art of foundation engineering practice, pp 534–553Google Scholar
  17. 17.
    Rücker W, Karabeliov K, Cuellar P, Baeßler M, Georgi S (2013) Großversuche an Rammpfählen zur Ermittlung der Tragfähigkeit unter zyklischer Belastung und Standzeit. Geotechnik 36(2):77–89CrossRefGoogle Scholar
  18. 18.
    Stahlmann J, Kirsch F, Schallert M, Klingmüller O, Elmer KH (2004) Pfahltests—modern dynamisch und/oder konservativ statisch. In: Tagungsband zum 4. Kolloquium “Bauen in Boden und Fels” der Technischen Akademie Esslingen, pp 23–40Google Scholar
  19. 19.
    von Wolffersdorff PA (1996) A hypoplastic relation for granular materials with a predefined limit state surface. Mech Cohes Frict Mater 1(3):251–271CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Geotechnical Engineering and Construction ManagementHamburg University of TechnologyHamburgGermany

Personalised recommendations