On specification of conditions at failure in interbedded sedimentary rock mass

  • P. Przecherski
  • S. PietruszczakEmail author
Research Paper


This paper presents a methodology for assessing the conditions at failure in interbedded sedimentary rocks. The type of rock mass considered here is representative of Carpathian Flysch Belt and has a sequence of alternating deposits of claystone and sandstone with varying thickness. The approach involves a numerical investigation at the mesoscale that allows the assessment of strength properties for different orientations of stratification. A comprehensive set of data generated through this investigation is then employed to identify material functions in a continuum framework that accounts for the effects of inherent anisotropy at the macroscale. The conditions at failure in both compression and tension regimes are addressed, and the performance of the macroscopic criterion is verified for different stress trajectories. A simplified procedure for incorporating the influence of volume fraction of constituents within the proposed macroscopic formulation is also suggested.


Carpathian Flysch Failure criterion Inherent anisotropy Mesoscale analysis 



  1. 1.
    Amadei B (1983) Rock anisotropy and the theory of stress measurements. Springer, BerlinCrossRefzbMATHGoogle Scholar
  2. 2.
    Ambrose J (2014) Failure of anisotropic shales under triaxial stress conditions. Ph.D. thesis, Imperial College London: Department of Earth Science and EngineeringGoogle Scholar
  3. 3.
    Aubertin M, Li L, Simon R (2000) A multiaxial stress criterion for short- and long-term strength of isotropic rock media. Int J Rock Mech Min Sci 37:1169–1193CrossRefGoogle Scholar
  4. 4.
    Barla G (1974) Rock anisotropy: theory and laboratory testing. In: Mueller L (ed) Rock mechanics. Springer, Wien, pp 131–169Google Scholar
  5. 5.
    Boehler JP, Sawczuk A (1977) On yielding of oriented solids. Acta Mech 27:185–204CrossRefGoogle Scholar
  6. 6.
    Chen CS, Pan E, Amadei B (1998) Determination of deformability and tensile strength of anisotropic rock using Brazilian tests. Int J Rock Mech Min Sci 35:43–61CrossRefGoogle Scholar
  7. 7.
    Duveau G, Shao JF, Henry JP (1998) Assessment of some failure criteria for strongly anisotropic geomaterials. Mech Cohesive-Frict Mater 3:1–26CrossRefGoogle Scholar
  8. 8.
    Hill R (1950) The mathematical theory of plasticity. Oxford University Press, OxfordzbMATHGoogle Scholar
  9. 9.
    Hoek E, Brown E (1980) Empirical strength criterion for rock masses. J Geotech Eng Div ASCE 106:1013–1035Google Scholar
  10. 10.
    Jaeger JC (1960) Shear failure of anisotropic rocks. Geol Mag 97:65–72CrossRefGoogle Scholar
  11. 11.
    Liao JJ, Yang MT, Hsieh HY (1997) Direct tensile behavior of a transversely isotropic rock. Int J Rock Mech Min Sci 34:837–849CrossRefGoogle Scholar
  12. 12.
    Lydzba D, Pietruszczak S, Shao JF (2003) On anisotropy of stratified rocks: homogenization and fabric tensor approach. Comput Geotech 30:289–302CrossRefGoogle Scholar
  13. 13.
    Matthews F, Davies G, Hitchings D, Soutis C (2000) Finite element modelling of composite materials and structures. CRC Press, Boca RatonCrossRefGoogle Scholar
  14. 14.
    Nasseri MHB, Rao KS, Ramamurthy T (2003) Anisotropic strength and deformational behavior of Himalayan schists. Int J Rock Mech Min Sci 40:3–23CrossRefGoogle Scholar
  15. 15.
    Niandou H, Shao JF, Henry JP, Fourmaintraux D (1997) Laboratory investigation of the mechanical behaviour of Tournemire shale. Int J Rock Mech Min Sci 34:3–16CrossRefGoogle Scholar
  16. 16.
    Nova R (1980) The failure of transversely isotropic rocks in triaxial compression. Int J Rock Mech Min Sci 17:325–332CrossRefGoogle Scholar
  17. 17.
    Paterson MS, Wong TF (2005) Experimental rock deformation-the brittle field. Springer, BerlinGoogle Scholar
  18. 18.
    Pariseau WG (1968) Plasticity theory for anisotropic rocks and soil. In: Proceedings 10th US symposium rock mechanics, ARMA 68-0267Google Scholar
  19. 19.
    Pietruszczak S, Mroz Z (2001) On failure criteria for anisotropic cohesive-frictional materials. Int J Numer Anal Methods Geomech 25:509–524CrossRefzbMATHGoogle Scholar
  20. 20.
    Pietruszczak S, Lydzba D, Shao JF (2002) Modelling of inherent anisotropy in sedimentary rocks. Int J Solids Struct 39:637–648CrossRefzbMATHGoogle Scholar
  21. 21.
    Pietruszczak S, Oulapour M (1999) Assessment of dynamic stability of foundations on saturated sandy soils. J Geotech Eng 125:576–582CrossRefGoogle Scholar
  22. 22.
    Saeidi O, Rasouli V, Vaneghi RG, Gholami R, Torabi SR (2014) A modified failure criterion for transversely isotropic rocks. Geosci Frontiers 5:215–225CrossRefGoogle Scholar
  23. 23.
    Saroglou H, Tsiambaos G (2008) A modified Hoek-Brown failure criterion for transversely isotropic intact rock. Int J Rock Mech Min Sci 45:223–234CrossRefGoogle Scholar
  24. 24.
    Tien YM, Kuo MC, Lu Xia-Ting YC (2017) Failure criteria for transversely isotropic rock. Rock Mech Eng 1:451–477Google Scholar
  25. 25.
    Tyrus JM, Gosz M, DeSantiago E (2007) A local finite element implementation for imposing periodic boundary conditions on composite micromechanical models. Int J Solids Struct 44:2972–2989CrossRefzbMATHGoogle Scholar
  26. 26.
    Tziallas GP, Saroglou H, Tsiabaos G (2013) Determination of mechanical properties of flysch using laboratory methods. Eng Geol 166:81–89CrossRefGoogle Scholar
  27. 27.
    Xia Z, Zhang Y, Ellyin F (2003) A unified periodical boundary conditions for representative volume elements of composites and applications. Int J Solids Struct 40:1907–1921CrossRefzbMATHGoogle Scholar
  28. 28.
    Zhang G (2009) Rock failure with weak planes by self-locking concept. Int J Rock Mech Min Sci 46:974–982CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Cracow University of TechnologyCracowPoland
  2. 2.McMaster UniversityHamiltonCanada

Personalised recommendations