Advertisement

Acta Geotechnica

, Volume 13, Issue 6, pp 1341–1354 | Cite as

Fabric evolution of granular materials along imposed stress paths

  • Jingshan Shi
  • Peijun Guo
Research Paper
  • 167 Downloads

Abstract

The stress–strain behavior of a granular material is dominated by its internal structure, which is related to the spatial connectivity of particles, and the force chain network. In this study, a series of discrete element simulations were carried out to investigate the evolution of internal structure and force chain networks in initially isotropic granular materials along various imposed stress paths. The fabric tensor of the strong sub-network, which is the bearing network toward loading, can be related to the applied stresses uniquely. The principal directions of fabric tensor of the strong sub-network coincide with those of stress tensor during the loading process in the Lode coordinate system. The fabric of the whole contact network in the pre- and post-peak deformation stages can be related to the applied stresses as \(q_{\phi } = B\left( {q/p} \right)^{z}\) (B and z are constants depending on loading condition, such as the stress paths and mean stress level) and \(\phi_{1} :\phi_{2} :\phi_{3} \approx \left( {\sigma_{1} } \right)^{0.4} :\left( {\sigma_{2} } \right)^{0.4} :\left( {\sigma_{3} } \right)^{0.4}\), respectively. At the critical stress state, the deviator of fabric tensor of the strong sub-network is much larger than that of the whole contact network. When plotted on the π-plane, the fabric state of the strong sub-network can be expressed as a Lade’s surface, while the fabric state of the whole network corresponds to an inverted Lade’s surface.

Keywords

Critical state Fabric evolution Granular material Strong sub-network Weak sub-network 

Notes

Acknowledgements

Funding provided by the Natural Sciences and Engineering Research Council of Canada and the China Scholarship Council (CSC) is gratefully acknowledged.

References

  1. 1.
    Antony SJ, Momoh RO, Kuhn MR (2004) Micromechanical modelling of oval particulates subjected to bi-axial compression. Comput Mater Sci 29(4):494–498.  https://doi.org/10.1016/j.commatsci.2003.12.007 CrossRefGoogle Scholar
  2. 2.
    Azéma E, Radjaï F (2010) Stress-strain behavior and geometrical properties of packings of elongated particles. Phys Rev E 81(5):051304-1-17.  https://doi.org/10.1103/physreve.81.051304 CrossRefGoogle Scholar
  3. 3.
    Barreto D, O’Sullivan C (2012) The influence of inter-particle friction and the intermediate stress ratio on soil response under generalised stress conditions. Granul Matter 14(4):505–521.  https://doi.org/10.1007/s10035-012-0354-z CrossRefGoogle Scholar
  4. 4.
    Chang CS, Liu Y (2013) Stress and fabric in granular material. Theor Appl Mech Lett 3(2):21002.  https://doi.org/10.1063/2.1302102 CrossRefGoogle Scholar
  5. 5.
    Chowdhury EQ, Nakai T (1998) Consequences of the t(ij)-concept and a new modeling approach. Comput Geotech 23(3):131–164.  https://doi.org/10.1016/S0266-352X(98)00017-2 CrossRefGoogle Scholar
  6. 6.
    Christoffersen J, Mehrabadi MM, Nemat-Nasser S (1981) A micromechanical description of granular material behavior. J Appl Mech Trans ASME 48(2):339–344.  https://doi.org/10.1115/1.3157619 CrossRefzbMATHGoogle Scholar
  7. 7.
    Collins IF, Muhunthan B (2003) On the relationship between stress–dilatancy, anisotropy, and plastic dissipation for granular materials. Géotechnique 53(7):611–618.  https://doi.org/10.1680/geot.2003.53.7.611 CrossRefGoogle Scholar
  8. 8.
    Cui L, O’Sullivan C (2006) Exploring the macro- and micro-scale response of an idealised granular material in the direct shear apparatus. Géotechnique 56(7):455–468.  https://doi.org/10.1680/geot.2006.56.7.455 CrossRefGoogle Scholar
  9. 9.
    Dafalias YF (2016) Must critical state theory be revisited to include fabric effects? Acta Geotech 11(3):479–491.  https://doi.org/10.1007/s11440-016-0441-0 CrossRefGoogle Scholar
  10. 10.
    Fu P, Dafalias YF (2011) Fabric evolution within shear bands of granular materials and its relation to critical state theory. Int J Numer Anal Methods Geomech 35(18):1918–1948.  https://doi.org/10.1002/nag.988 CrossRefGoogle Scholar
  11. 11.
    Gao Z, Zhao J, Li XS, Dafalias YF (2014) A critical state sand plasticity model accounting for fabric evolution. Int J Numer Anal Methods Geomech 38(4):370–390.  https://doi.org/10.1002/nag.2211 CrossRefGoogle Scholar
  12. 12.
    Kruyt NP, Antony SJ (2007) Force, relative-displacement, and work networks in granular materials subjected to quasistatic deformation. Phys Rev E Phys 75(5):051308-1-8.  https://doi.org/10.1103/physreve.75.051308 CrossRefGoogle Scholar
  13. 13.
    Kuhn MR, Sun WC, Wang Q (2015) Stress-induced anisotropy in granular materials: fabric, stiffness, and permeability. Acta Geotech 10(4):399–419.  https://doi.org/10.1007/s11440-015-0397-5 CrossRefGoogle Scholar
  14. 14.
    Lade PV (2008) Failure criterion for cross-anisotropic soils. J Geotech Geoenviron Eng 134(1):117–124.  https://doi.org/10.1061/(ASCE)1090-0241(2008)134:1(117) CrossRefGoogle Scholar
  15. 15.
    Lade PV, Duncan JM (1975) Elastoplastic stress-strain theory for cohesionless soil. J Geotech Geoenviron Eng 101(GT10):1037–1053Google Scholar
  16. 16.
    Li XS, Dafalias YF (2011) Anisotropic critical state theory: role of fabric. J Eng Mech 138(3):263–275.  https://doi.org/10.1061/(ASCE)EM.1943-7889.0000324 CrossRefGoogle Scholar
  17. 17.
    Love AEH (1892) A treatise on the mathematical theory of elasticity. Cambridge University Press, CambridgezbMATHGoogle Scholar
  18. 18.
    Matsuoka H, Nakai T (1974) stress-deformation and strength characteristics of soil under three different principal stresses. Proc JSCE 1974(232):59–70.  https://doi.org/10.2208/jscej1969.1974.232_59 CrossRefGoogle Scholar
  19. 19.
    Mehrabadi MM, Nemat-Nasser S, Oda M (1982) On statistical description of stress and fabric in granular materials. Int J Numer Anal Methods Geomech 6(1):95–108.  https://doi.org/10.1002/nag.1610060107 MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Ng T (2001) Fabric evolution of ellipsoidal arrays with different particle shapes. J Eng Mech 127(10):994–999.  https://doi.org/10.1061/(ASCE)0733-9399(2001)127:10(994) CrossRefGoogle Scholar
  21. 21.
    Oda M (1982) Fabric tensor for discontinuous geological materials. Soils Found 22(4):96–108.  https://doi.org/10.3208/sandf1972.22.4_96 CrossRefGoogle Scholar
  22. 22.
    Oda M (1993) Inherent and induced anisotropy in plasticity theory of granular soils. Mech Mater 16(1–2):35–45.  https://doi.org/10.1016/0167-6636(93)90025-M CrossRefGoogle Scholar
  23. 23.
    Radjai F, Wolf D, Jean M, Moreau J-J (1998) Bimodal character of stress transmission in granular packings. Phys Rev Lett 80(1):61–64.  https://doi.org/10.1103/PhysRevLett.80.61 CrossRefGoogle Scholar
  24. 24.
    Radjaï F, Jean M, Moreau J-J, Roux S (1996) Force distributions in dense two-dimensional granular systems. Phys Rev Lett 77(2):274–277.  https://doi.org/10.1103/PhysRevLett.77.274 CrossRefGoogle Scholar
  25. 25.
    Radjaï F, Delenne JY, Azéma E, Roux S (2012) Fabric evolution and accessible geometrical states in granular materials. Granul Matter 14(2):259–264.  https://doi.org/10.1007/s10035-012-0321-8 CrossRefGoogle Scholar
  26. 26.
    Satake M (1978) Constitution of mechanics of granular materials through the graph theory. In: Proceedings of US–Japan seminar on continuum-mechanical and statistical approaches in the mechanics of granular materials, pp 47–62Google Scholar
  27. 27.
    Shi J, Guo P (2018) Induced fabric anisotropy of granular materials in biaxial tests along imposed strain paths. Soils Found 58(2):249–263.  https://doi.org/10.1016/j.sandf.2018.02.001 CrossRefGoogle Scholar
  28. 28.
    Thornton C (2000) Numerical simulations of deviatoric shear deformation of granular media. Géotechnique 50(1):43–53.  https://doi.org/10.1680/geot.2000.50.1.43 CrossRefGoogle Scholar
  29. 29.
    Thornton C, Antony SJ (2000) Quasi-static shear deformation of a soft particle system. Powder Technol 109(1–3):179–191.  https://doi.org/10.1016/S0032-5910(99)00235-1 CrossRefGoogle Scholar
  30. 30.
    Thornton C, Zhang L (2010) On the evolution of stress and microstructure during general 3D deviatoric straining of granular media. Géotechnique 60(5):333–341.  https://doi.org/10.1680/geot.2010.60.5.333 CrossRefGoogle Scholar
  31. 31.
    Wan RG, Guo PJ (2004) Stress dilatancy and fabric dependencies on sand behavior. J Eng Mech 130(6):635–645.  https://doi.org/10.1061/(ASCE)0733-9399(2004)130:6(635) CrossRefGoogle Scholar
  32. 32.
    Wan R, Pouragha M (2015) Fabric and connectivity as field descriptors for deformations in granular media. Contin Mech Thermodyn 27(1–2):243–259.  https://doi.org/10.1007/s00161-014-0370-9 CrossRefGoogle Scholar
  33. 33.
    Wang R, Fu P, Zhang JM, Dafalias YF (2016) DEM study of fabric features governing undrained post-liquefaction shear deformation of sand. Acta Geotech 11(6):1321–1337.  https://doi.org/10.1007/s11440-016-0499-8 CrossRefGoogle Scholar
  34. 34.
    Weber J (1966) Recherches concernant les contraintes intergranulaires dans les milieux pulvérulents. Bull Liaison des Ponts-et-chaussées 20:1–20Google Scholar
  35. 35.
    Zhao J, Guo N (2013) Unique critical state characteristics in granular media considering fabric anisotropy. Géotechnique 63(8):695–704.  https://doi.org/10.1680/geot.12.P.040 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Civil EngineeringMcMaster UniversityHamiltonCanada

Personalised recommendations