Acta Geotechnica

, Volume 14, Issue 1, pp 141–162 | Cite as

Physical model test of transparent soil on coupling effect of cut-off wall and pumping wells during foundation pit dewatering

  • Jianxiu WangEmail author
  • Xiaotian Liu
  • Shaoli Liu
  • Yanfei Zhu
  • Weiqiang Pan
  • Jie Zhou
Research Paper


Water level is decreased during foundation pit excavation to avoid water inrush under confined water pressure. Cut-off wall is often used as waterproof curtain to partially cut off the dewatered aquifer. When a foundation pit is located in a built-up area and the underlying confined aquifer is not cut off, the drawdown must be minimized outside the pit to avoid land subsidence in buildings and pipelines. The coupling effect of the cut-off wall and pumping well is used to control the drawdown outside the foundation pit. However, the coupling mechanism is not intuitively well understood because of the limitations of existing experimental methods. In this study, transparent soil was introduced to model the coupling mechanism in the physical model test. High-purity fused silica and mixed paraffin oil were used as skeleton and fluid to simulate the confined aquifer and groundwater. Industrial solid dye and paraffin oil were used as tracers. A camera was used to collect flow information. Tests were performed for the combinations of cut-off wall and partially penetrating pumping wells. The insertion depth ratio of the cut-off wall most effectively influenced the drawdown. The layout of the pumping wells in horizontal direction influenced water level distribution and flow rate. The optimal depth of the pumping wells was 1–5 m above the bottom of the cut-off wall, and the optimal horizontal distance between the cut-off wall and the pumping wells was 25% of the pit width. Non-Darcy flow was observed within the range of 0–10 m around the bottom of the cut-off wall. These results were significant in understanding the cut-off wall and pumping well coupling effect on foundation pit dewatering.


Coupling mechanism Cut-off wall Foundation pit dewatering Pumping wells Transparent soil physical model test 

List of symbols


Drawdown decreasing rate, it is equal to the water level difference of both sides of cut-off wall divided by the water level inside pit


Insertion depth that the cut-off wall penetrates into the confined aquifer


Horizontal distance between the pumping wells and the cut-off wall


Vertical distance from the bottom of the well screens to the bottom of the cut-off wall


Thickness of the confined aquifer


Insertion depth ratio of the cut-off wall


Well screen length


Pumping wells number


Independent similarity ratio variables of geometry


Independent similarity ratio variables of force


Independent similarity ratio variables of time


Independent similarity ratio variables of gravity


Independent similarity ratio variables of pressure

\(\alpha_{\Delta h}\)

Independent similarity ratio variables of drawdown

\(\alpha_{\rho }\)

Independent similarity ratio variables of density


Independent similarity ratio variables of flow velocity


Independent similarity ratio variables of hydraulic conductivity

\(\alpha_{\mu }\)

Independent similarity ratio variables of viscosity


Independent similarity ratio variables of flow rate


Distance in Cartesian coordinate system (RGB color model)

Ru, Gu, Bu

Identify point value of tracers in RGB color model

Rr, Gr, Br

Standard value of tracers in RGB color model



This work is supported by National Key Basic Research Program of China (2014CB046901); National Key R&D Program of China (2017YFC0806000), the research grant (2014-SK-8) from Shanghai Tunnel Engineering Co., Ltd., Shanghai Pujiang Program (15PJD039), Opening fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology) (SKLGP2018K019), Shanghai Municipal Science and technology project (16DZ1201303), GDUE Open Funding (SKLGDUEK1417), LSMP Open Funding (KLLSMP201403, KLLSMP201404).


  1. 1.
    Bear J (1979) Hydraulics of groundwater. McGraw-Hill, New YorkGoogle Scholar
  2. 2.
    Behrooz-Koohenjani S, Samani N, Kompani-Zare M (2013) Steady flow to a partially penetrating blind-wall well in a confined aquifer. Hydrol Process 27(16):2271–2279. Google Scholar
  3. 3.
    Butler JJJ, Liu WZ (1991) Pumping tests in non-uniform aquifers—the linear strip case. J Hydrol 128(1–4):69–99. Google Scholar
  4. 4.
    Casagrande A (1937) Seepage through dams. J New England Water Works Assoc 51(2):131–172Google Scholar
  5. 5.
    Chen J, Wada N (1986) Visualization of immiscible displacement in a three-dimensional transparent porous medium. Exp Fluids 4(6):336–338. Google Scholar
  6. 6.
    Cui ZD, Jia YJ, Yuan L (2016) Distribution law of soil deformation caused by decompression of confined water. Environ Earth Sci 75(18):1281. Google Scholar
  7. 7.
    Davis GM, Horswill P (2002) Groundwater control and stability in an excavation in magnesian limestone near Sunderland. Eng Geol 66(1):1–18. Google Scholar
  8. 8.
    Debidin F, Lee CF (1980) Groundwater and drawdown in a large earth excavation. Can Geotech J 17(2):185–202. Google Scholar
  9. 9.
    Ding GP, Jiao JJ, Zhang DX (2008) Modelling study on the impact of deep building foundations on the groundwater system. Hydrol Proc 22(12):1857–1865. Google Scholar
  10. 10.
    Ezzein FM, Bathurst RJ (2011) A transparent sand for geotechnical laboratory modeling. Geotech Test J 34(6):1–12. Google Scholar
  11. 11.
    Farrell ER (1994) Analysis of groundwater flow through leaky marine retaining structures. Géotechnique 44(2):255–263. Google Scholar
  12. 12.
    Fernandez SR, Iskander M, Tabe K (2011) 3D Contaminant flow imaging in transparent granular porous media. Geotech Lett 1(3):71–78. Google Scholar
  13. 13.
    Galloway DL, Jones DR, Ingebritsen SE (1999) Land subsidence in the United States, vol 1182. US Geological Survey Circular, RestonGoogle Scholar
  14. 14.
    Gao Y, Sui W, Liu J (2015) Visualization of chemical grout permeation in transparent soil. Geotech Test J 38(5):2477–2488. Google Scholar
  15. 15.
    Gill D, Lehane B (2001) An optical technique for investigating soil displacement patterns. Geotech Test J 24(3):324–329. Google Scholar
  16. 16.
    Griffith DV, Fenton GA (1993) Seepage beneath water retaining structures founded on spatially random soil. Géotechnique 43(4):577–587. Google Scholar
  17. 17.
    Guzman IL, Iskander M, Suescun-Florez E, Omidvar M (2014) A transparent aqueous-saturated sand surrogate for use in physical modeling. Acta Geotech 9(2):187–206. Google Scholar
  18. 18.
    Harr ME (1962) Groundwater and seepage. McGraw-Hill, New YorkGoogle Scholar
  19. 19.
    Hird CC, Ni Q, Guymer I (2011) Physical modelling of deformations around piling augers in clay. Géotechnique 61(11):993–999. Google Scholar
  20. 20.
    Houben GJ (2015) Review: hydraulics of water wells—flow laws and influence of geometry. Hydrogeol J 23(8):1633–1657. Google Scholar
  21. 21.
    Houben GJ (2015) Review: hydraulics of water wells—head losses of individual components. Hydrogeol J 23(8):1659–1675. Google Scholar
  22. 22.
    Hsi J, Small J (1992) Ground settlements and drawdown of the water table around an excavation. Can Geotech J 29(5):740–756. Google Scholar
  23. 23.
    Iskander M (2010) Modelling with transparent soils: visualizing soil structure interaction and multi phase flow, non-intrusively. Springer, Berlin. Google Scholar
  24. 24.
    Iskander M, Lai J, Oswald C, Mannheimer R (1994) Development of a transparent material to model the geotechnical properties of soils. Geotech Test J 17(4):425–433. Google Scholar
  25. 25.
    Iskander M, Liu J, Sadek S (2002) Transparent amorphous silica to model clay. J Geotech Geoenviron 128(3):262–273. Google Scholar
  26. 26.
    Iskander M, Sadek S, Liu J (2002) Optical measurement of deformation using transparent silica gel to model sand. Int J Phys Model Geo 2(4):13–26. Google Scholar
  27. 27.
    Iskander M, Bathurst RJ, Omidvar M (2015) Past, present, and future of transparent soils. Geotech Test J 38(5):393–401. Google Scholar
  28. 28.
    Kong GQ, Zhou LD, Wang TZ, Yang G, Li H (2016) Shear modulus and damping ratios of transparent soil manufactured by fused quartz. Mater Lett 182(1):257–259. Google Scholar
  29. 29.
    Lehane B, Gil D (2004) Displacement fields induced by penetrometer installation in an artificial soil. Int J Phys Model Geotech 4(1):25–36. Google Scholar
  30. 30.
    Liu J (2003) Visualization of 3-d deformations using transparent ‘soil’ models. Ph.D. thesis, Polytechnic University of New York, Brooklyn, New YorkGoogle Scholar
  31. 31.
    Liu J, Iskander M, Sadek S (2003) Consolidation and permeability of transparent amorphous silica. Geotech Test J 26(4):390–401. Google Scholar
  32. 32.
    Lo HC, Tabe K, Iskander M, Yoon SH (2010) A transparent water-based polymer for simulating multiphase flow. Geotech Test J 33(1):1–13. Google Scholar
  33. 33.
    Luo ZJ, Zhang YY, Wu YX (2008) Finite element numerical simulation of three-dimensional seepage control for deep foundation pit dewatering. J Hydrodyn 20(5):596–602. Google Scholar
  34. 34.
    Ma Y, Kong XZ, Scheuermann A, Galindo-Torres SA, Bringemeier D, Li L (2015) Microbubble transport in water-saturated porous media. Water Resour Res 51(6):4359–4373. Google Scholar
  35. 35.
    Mannheimer R (1990) Slurries you can see through. In: Technology Today. Southwest Research Institute, San Antonio, Texas, p 2Google Scholar
  36. 36.
    Mannheimer R, Oswald C (1993) Development of transparent porous media with permeabilities and porosities comparable to soils, aquifers, and petroleum reservoirs. Ground Water 31(5):781–788. Google Scholar
  37. 37.
    Mansur CI, Kaufman RI (1962) Dewatering in foundation engineering. McGraw-Hill, New YorkGoogle Scholar
  38. 38.
    McKelvey D, Sivakumar V, Bell A, Graham J (2004) Modelling vibrated stone columns in soft clay. Geotech Eng 157(3):137–149. Google Scholar
  39. 39.
    Ng CWW, Li Q, Liu GB (2012) Long-term tunnel settlement mechanisms of Metro Line 2 in Shanghai. Geotechnical aspects of underground construction in soft ground. Taylor & Francis Group, London, pp 21–36. Google Scholar
  40. 40.
    Ng CWW, Liu GB, Li Q (2013) Investigation of the long-term tunnel settlement mechanisms of the first metro line in Shanghai. Can Geotech J 50(6):674–684. Google Scholar
  41. 41.
    Ni Q, Hird C, Guymer I (2010) Physical modelling of pile penetration in clay using transparent soil and particle image velocimetry. Géotechnique 60(2):121–132. Google Scholar
  42. 42.
    Pavlovsky NN (1933) Motion of water under dams. In: Proceedings of the 1st congress on large dams, Stockholm, pp 179–192Google Scholar
  43. 43.
    Pujades E, Carrera J, Vázquez-Suñé E, Jurado A, Vilarrasa V, Mascuñano-Salvador E (2012) Hydraulic characterization of diaphragm walls for cut and cover tunneling. Eng Geol 125(1):1–10. Google Scholar
  44. 44.
    Pujades E, López A, Carrera J, Vázquez-Suñé E, Jurado A (2012) Barrier effect of underground structures on aquifers. Eng Geol s 145–146(6):41–49. Google Scholar
  45. 45.
    Pujades E, Vázquez-Suñé E, Carrera J, Jurado A (2014) Dewatering of a deep excavation undertaken in a layered soil. Eng Geol 178(15):15–27. Google Scholar
  46. 46.
    Pujades E, Vázquez-Suñé E, Carrera J, Vilarrasa V, Simone SD, Jurado A, Ledesma A, Ramos G, Lloret A (2014) Deep enclosures versus pumping to reduce settlements during shaft excavations. Eng Geol 169:100–111. Google Scholar
  47. 47.
    Sadek S (2000) Soil structure interaction in transparent synthetic soils using digital image correlation. Ph.D. thesis, Polytechnic University of New York, Brooklyn, New YorkGoogle Scholar
  48. 48.
    Sen Z (1989) Nonlinear flow toward wells. J Hydraul Eng 115(2):193–209. Google Scholar
  49. 49.
    Shen SL, Xu YS (2011) Numerical evaluation of land subsidence induced by groundwater pumping in Shanghai. Can Geotech J 48(9):1378–1392. Google Scholar
  50. 50.
    Song Z, Hu Y, O’Loughlin C, Randolph MF (2009) Loss in anchor embedment during plate anchor keyingin clay. ASCE J Geotech Geoenviron Eng 135(10):1475–1485. Google Scholar
  51. 51.
    Sui W, Qu H, Gao Y (2015) Modeling of grout propagation in transparent replica of rock fractures. Geotech Test J 38(5):630–633. Google Scholar
  52. 52.
    Tabe K (2015) Transparent aquabeads to model LNAPL ganglia migration through surfactant flushing. Geotech Test J 38(5):1–18. Google Scholar
  53. 53.
    Toiya M, Hettinga J, Losert W (2007) 3D Imaging of particle motion during penetrometer testing. Gran Matter 9(5):323–329. Google Scholar
  54. 54.
    Vilarrasa V, Carrera J, Jurado A, Pujades E, Vázquez-Suné E (2011) A methodology for characterizing the hydraulic effectiveness of an annular low-permeability barrier. Eng Geol 120(1–4):68–80. Google Scholar
  55. 55.
    Walker LK, Morgan JR (1977) Field performance of a firm silty clay. In: 9th international conference on soil mechanics and foundation engineering, Tokyo, vol 1, pp 341–346Google Scholar
  56. 56.
    Wallace J, Rutherford C (2015) Geotechnical properties of laponite RD. Geotech Test J 38(5):1–14. Google Scholar
  57. 57.
    Wang JX, Hu LS, Wu LG, Tang YQ, Zhu YF, Yang P (2009) Hydraulic barrier function of the underground continuous concrete wall in the pit of subway station and its optimization. Environ Geol 57(2):447–453. Google Scholar
  58. 58.
    Wang JX, Guo TP, Wu LG, Zhu YF, Tang YQ, Yang P (2010) Mechanism and application of interaction between underground wall and well in dewatering for deep excavation. Chinese J Undergr Sp Eng 6:564–570. (in Chinese) Google Scholar
  59. 59.
    Wang JX, Feng B, Guo TP, Wu LG, Lou RX, Zhou Z (2013) Using partial penetrating wells and curtains to lower the water level of confined aquifer of gravel. Eng Geol 161(3):16–25. Google Scholar
  60. 60.
    Wang JX, Wu YB, Liu XT, Yang TL, Wang HM, Zhu YF (2016) Areal subsidence under pumping well–curtain interaction in subway foundation pit dewatering: conceptual model and numerical simulations. Environ Earth Sci 75(3):198. Google Scholar
  61. 61.
    Welker A, Bowders J, Gilbert R (1999) Applied research using a transparent material with hydraulic properties similar to soil. Geotech Test J 22(3):266–270. Google Scholar
  62. 62.
    Welker A, Bowders J, Gilbert R (2000) Using a reduced equivalent diameter for a prefabricated vertical drain to account for smear. Geosynth Int 7(1):47–57. Google Scholar
  63. 63.
    Wu YX, Shen SL, Xu YS, Yin ZY (2015) Characteristics of groundwater seepage with cut-off wall in gravel aquifer. I: field observations. Can Geotech J 52:526–1538. Google Scholar
  64. 64.
    Wu YX, Shen SL, Yin ZY, Xu YS (2015) Characteristics of groundwater seepage with cut-off wall in gravel aquifer. II: numerical analysis. Can Geotech J 52:1–11. Google Scholar
  65. 65.
    Xu YS, Shen SL, Ma L, Sun WJ, Yin ZY (2014) Evaluation of the blocking effect of retaining walls on groundwater seepage in aquifers with different insertion depths. Eng Geol 183:254–264. Google Scholar
  66. 66.
    Xu YS, Shen SL, Ren DJ, Wu HN (2016) Analysis of factors in land subsidence in Shanghai: a view based on a strategic environmental assessment. Sustainability 8(6):573. Google Scholar
  67. 67.
    Ye SJ, Xue YQ, Wu JC, Yan XX, Yu J (2016) Progression and mitigation of land subsidence in China. Hydrogeol J 24(3):685–693. Google Scholar
  68. 68.
    Zhang Y, Wu JC, Xue YQ, Wang ZC, Yao YG, Yan XX, Wang HM (2015) Land subsidence and uplift due to long-term groundwater extraction and artificial recharge in Shanghai, China. Hydrogeol J 23(8):1851–1866. Google Scholar
  69. 69.
    Zhang Y, Xue YQ, Wu JC, Wang ZC (2015) Compaction of aquifer units under complex patterns of changing groundwater level. Environ Earth Sci 73(4):1537–1544. Google Scholar
  70. 70.
    Zhu YF, Huang YZ, Tan YP, Chen JJ (2015) Stratified settlement characteristics of the soil strata in Shanghai due to dewatering. J Aerosp Eng 28(6):A4014005. Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Civil EngineeringTongji UniversityShanghaiChina
  2. 2.Key Laboratory of Geotechnical and Underground Engineering of Ministry of EducationTongji UniversityShanghaiChina
  3. 3.Shanghai Tunnel Engineering Co., Ltd.ShanghaiChina
  4. 4.Department of Geotechnical EngineeringTongji UniversityShanghaiChina

Personalised recommendations