Advertisement

Acta Geotechnica

, Volume 13, Issue 5, pp 1041–1059 | Cite as

Liquefaction analysis and damage evaluation of embankment-type structures

  • Ioanna RaptiEmail author
  • Fernando Lopez-Caballero
  • Arezou Modaressi-Farahmand-Razavi
  • Alexandre Foucault
  • Francois Voldoire
Research Paper

Abstract

The increasing importance of performance-based earthquake engineering analysis points out the necessity to assess quantitatively the risk of liquefaction of embankment-type structures. In this extreme scenario of soil liquefaction, devastating consequences are observed, e.g., excessive settlements, lateral spreading and slope instability. The present work discusses the global dynamic response and interaction of an earth structure-foundation system, so as to determine quantitatively the collapse mechanism due to foundation’s soil liquefaction. A levee-foundation system is simulated, and the influence of characteristics of input ground motion, as well as of the position of liquefied layer on the liquefaction-induced failure, is evaluated. For the current levee model, its induced damage level (i.e., induced crest settlements) is strongly related to both liquefaction apparition and dissipation of excess pore water pressure on the foundation. The respective role of input ground motion characteristics is a key component for soil liquefaction apparition, as long duration of mainshock can lead to important nonlinearity and extended soil liquefaction. A circular collapse surface is generated inside the liquefied region and extends toward the crest in both sides of the levee. Even so, when the liquefied layer is situated in depth, no significant effect on the levee response is found. This research work provides a reference case study for seismic assessment of embankment-type structures subjected to earthquake and proposes a high-performance computational framework accessible to engineers.

Keywords

Dynamic analysis Earthquake loading FE modeling Instability Nonlinear coupled hydromechanical behavior Soil liquefaction Strain localization 

Notes

Acknowledgements

The research reported in this paper has been funded by the ANRT (Association Nationale de la Recherche et de la Technologie) under a CIFRE convention number 0120/2013 and is supported partially by the SEISM Paris Saclay Research Institute (http://www.institut-seism.fr/en/).

References

  1. 1.
    Adalier K, Sharp MK (2004) Dynamic behavior of embankment dam on liquefiable foundation subject to moderate earthquake loading. In: 13th World conference on earthquake engineering, Vancouver, BC, Canada, 1025Google Scholar
  2. 2.
    Andrade JE, Ramos AM, Lizcano A (2013) Criterion for flow liquefaction instability. Acta Geotech.  https://doi.org/10.1007/s11440-013-0223-x Google Scholar
  3. 3.
    Aubry D, Modaressi H (1990) Dynamic analysis of saturated Non linear media. In: Numerical methods and constitutive modelling in geomechanics, International Centre for Mechanical Sciences, vol 311. Springer, Wien, pp 211–235Google Scholar
  4. 4.
    Aydingun O, Adalier K (2003) Numerical analysis of seismically induced liquefaction in earth embankment foundations. Part I. Benchmark model. Can Geotech J 40(4):753–765CrossRefGoogle Scholar
  5. 5.
    Baker JW (2007) Quantitative classification of near-fault ground motions using wavelet analysis. Bull Seismol Soc Am 97(5):1486–1501.  https://doi.org/10.1785/0120060255 CrossRefGoogle Scholar
  6. 6.
    Baker JW, Lin T, Shahi SK, Jayaram N (2011) New ground motion selection procedures and selected motions for the PEER transportation research program. Tech. rep., PEER Report 2011, Pacific Earthquake Engineering Research Center. College of Engineering. University of California, BerkeleyGoogle Scholar
  7. 7.
    Bardet JP (1997) Experimental soil mechanics. Prentice-Hall, Englewood CliffsGoogle Scholar
  8. 8.
    Bigoni D, Hueckel T (1991) Uniqueness and localization—I. Associative and non-associative elastoplasticity. Int J Solids Struct 28(2):197–213CrossRefzbMATHGoogle Scholar
  9. 9.
    Borja RI (2006) Condition for liquefaction instability in fluid-saturated granular soils. Acta Geotech 1:211–224.  https://doi.org/10.1007/s11440-006-0017-5 CrossRefGoogle Scholar
  10. 10.
    Buscarnera G, di Prisco C (2012) Discussing the definition of the second-order work for unsaturated soils. Int J Numer Anal Methods Geomech 36(2010):36–49.  https://doi.org/10.1002/nag CrossRefGoogle Scholar
  11. 11.
    Byrne PM, Ss Park, Beaty M, Sharp M, Gonzalez L, Abdoun T (2004) Numerical modeling of liquefaction and comparison with centrifuge tests. Can Geotech J 211:193–211.  https://doi.org/10.1139/T03-088 CrossRefGoogle Scholar
  12. 12.
    Coelho P, Haigh SK, Madabhushi SPG (2004) Centrifuge modelling of earthquake effects in uniform deposits of saturated sand. In: 5th International conference on case histories in geotechnical engineering, New York, April 13–17, 36Google Scholar
  13. 13.
    Costa D’Aguiar S, Modaressi-Farahmand-Razavi A, Dos Santos J, Lopez-caballero F (2011) Elastoplastic constitutive modelling of soil-structure interfaces under monotonic and cyclic loading. Comput Geotech 38(4):430–447CrossRefGoogle Scholar
  14. 14.
    Coussy O (1991) Mecanique des milieux poreux, technip ednGoogle Scholar
  15. 15.
    Darve F, Laouafa F (2000) Instabilities in granular materials and application to landslides. Mech Cohes Frict Mater 5(8):627–652CrossRefGoogle Scholar
  16. 16.
    Foucault A (2009) Loi de comportement cyclique de Hujeux pour les sols. Documentation of Code_Aster [R70123]Google Scholar
  17. 17.
    Granet S (2015) Modèles de comportement THHM. Documentation of Code_Aster [R70111]Google Scholar
  18. 18.
    Hamadi K, Modaressi-Farahmand Razavi A, Darve F (2008) Bifurcation and instability modelling by a multimechanism elasto-plastic model. Int J Numer Anal Methods Geomech 32:461–492.  https://doi.org/10.1002/nag CrossRefzbMATHGoogle Scholar
  19. 19.
    Hill R (1958) A general theory of uniqueness and stability in elastic–plastic solids. J Mech Phys Solids 6:236–249CrossRefzbMATHGoogle Scholar
  20. 20.
    Hughes T (2000) The finite element method: linear static and dynamicFinite element analysis, dover edit edn. Dover, New YorkGoogle Scholar
  21. 21.
    Hujeux JC (1985) Une loi de comportement pour le chargement cyclique des sols. Presses ENPC pp 278–302Google Scholar
  22. 22.
    Iervolino I, Cornell CA (2005) Record selection for nonlinear seismic analysis of structures. Earthq Spectra 21(3):685–713CrossRefGoogle Scholar
  23. 23.
    Ishikawa H, Saito K, Nakagawa K, Uzuoka R (2015) Liquefaction analysis of a damaged river levee during the 2011 Tohoku earthquake. In: 14th International conference of the international association for computer methods and advances in geomechanics. Kyoto, Japan, pp 673–677Google Scholar
  24. 24.
    Kawase H (2011) Strong motion characteristics and their damage impact to structures during the Off Pacific Coast of Tohoku earthquake of March 11, 2011; How extraordinary was this M9.0 earthquake? In: 4th IASPEI/IAEE international symposium: effects of surface geology on seismic motion, University of California Santa BarbaraGoogle Scholar
  25. 25.
    Kim MK, Lee SH, Choo YW, Kim DS (2011) Seismic behaviors of earth-core and concrete-faced rock-fill dams by dynamic centrifuge tests. Soil Dyn Earthq Eng 31:1579–1593CrossRefGoogle Scholar
  26. 26.
    Kontoe S, Zdravkovic L, Potts D (2008) An assessment of time integration schemes for dynamic geotechnical problems. Comput Geotech 35(2):253–264CrossRefzbMATHGoogle Scholar
  27. 27.
    Koutsourelakis S, Prévost JH, Deodatis G (2002) Risk assessment of an interacting structure-soil system due to liquefaction. Earthq Eng Struct Dyn 31(4):851–879CrossRefGoogle Scholar
  28. 28.
    Kuhl D, Crisfield M (1999) Energy-conserving and decaying algorithms in non-linear structural dynamics. Int J Numer Methods Eng 45:569–599MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Lade P (1994) Instability and liquefaction of granular materials. Comput Geotech 16:123–151CrossRefGoogle Scholar
  30. 30.
    Lanzo G, Pagliaroli A (2012) Seismic site effects at near-fault strong-motion stations along the Aterno River Valley during the \(M_w=6.3 2009\) L’Aquila earthquake. Soil Dyn Earthq Eng 40:1–14CrossRefGoogle Scholar
  31. 31.
    Lopez-Caballero F, Modaressi-Farahmand-Razavi A (2008) Numerical simulation of liquefaction effects on seismic SSI. Soil Dyn Earthq Eng 28(2):85–98CrossRefGoogle Scholar
  32. 32.
    Lopez-Caballero F, Modaressi-Farahmand-Razavi A (2013) Numerical simulation of mitigation of liquefaction seismic risk by preloading and its effects on the performance of structures. Soil Dyn Earthq Eng 49:27–38CrossRefGoogle Scholar
  33. 33.
    Lopez-Caballero F, Modaressi-Farahmand-Razavi A, Modaressi H (2007) Nonlinear numerical method for earthquake site response analysis I—elastoplastic cyclic model and parameter identification strategy. Bull Earthq Eng 5:303–323.  https://doi.org/10.1007/s10518-007-9032-7 CrossRefGoogle Scholar
  34. 34.
    Lopez-Caballero F, Modaressi A, Stamatopoulos C (2016) Numerical evaluation of earthquake settlements of road embankments and mitigation by preloading. Int J Geomech 16(5):C4015006CrossRefGoogle Scholar
  35. 35.
    Lu CW, Oka F, Zhang F (2008) Analysis of soil-pile-structure interaction in a two-layer ground during earthquakes considering liquefaction. Int J Numer Anal Methods Geomech 32(8):863–895CrossRefzbMATHGoogle Scholar
  36. 36.
    Luong MP (1980) Phénomènes cycliques dans les sols pulvérulents. Revue Française de Géotechnique 10(1):39–53Google Scholar
  37. 37.
    Maharjan M, Takahashi A (2014) Liquefaction-induced deformation of earthen embankments on non-homogeneous soil deposits under sequential ground motions. Soil Dyn Earthq Eng 66:113–124.  https://doi.org/10.1016/j.soildyn.2014.06.024 CrossRefGoogle Scholar
  38. 38.
    Modaressi H (1987) Modélisation numérique de la propagation des ondes dans les milieux poreux anélastiques. PhD thesis, Ecole Centrale ParisGoogle Scholar
  39. 39.
    Modaressi H, Benzenati I (1994) Paraxial approximation for poroelastic media. Soil Dyn Earthq Eng 13(2):117–129CrossRefGoogle Scholar
  40. 40.
    Mohammadnejad T, Andrade JE (2015) Flow liquefaction instability prediction using finite elements. Acta Geotech 10(1):83–100CrossRefGoogle Scholar
  41. 41.
    Montoya-Noguera S, Lopez-Caballero F (2016) Effect of coupling excess pore pressure and deformation on nonlinear seismic soil response. Acta Geotech 11(1):191–207CrossRefGoogle Scholar
  42. 42.
    Najma A, Latifi M (2017) Predicting flow liquefaction, a constitutive model approach. Acta Geotech 12(1):793–808CrossRefGoogle Scholar
  43. 43.
    NAVFAC (1982) DESIGN MANUAL 7.01: Soil Mechanics. Tech. rep., Naval Facilities Engineering Command, Alexandria, VAGoogle Scholar
  44. 44.
    Nguyen TD (2006) Modélisation du comportement des matériaux granulaires. Application aux barrages en terre. PhD thesis, Ecole Centrale ParisGoogle Scholar
  45. 45.
    Oka F, Yashima A, Shibata T, Kato M, Uzuoka R (1994) FEM–FDM coupled liquefaction analysis of a porous soil using an elasto-plastic model. Appl Sci Res 52:209–245CrossRefzbMATHGoogle Scholar
  46. 46.
    Oka F, Tsai P, Kimoto S, Kato R (2012) Damage patterns of river embankments due to the 2011 off the Pacific Coast of Tohoku Earthquake and a numerical modeling of the deformation of river embankments with a clayey subsoil layer. Soils Found 52(5):890–909.  https://doi.org/10.1016/j.sandf.2012.11.010 CrossRefGoogle Scholar
  47. 47.
    Okamura M, Tamamura S, Yamamoto R (2013) Seismic stability of embankments subjected to pre-deformation due to foundation consolidation. Soils Found 53(1):11–22CrossRefGoogle Scholar
  48. 48.
    Ozutsumi O, Sawada S, Iai S, Takeshima Y, Sugiyama W, Shimazu T (2002) Effective stress analyses of liquefaction-induced deformation in river dikes. Soil Dyn Earthq Eng 22(9–12):1075–1082CrossRefGoogle Scholar
  49. 49.
    Popescu R, Prévost JH, Deodatis G, Chakrabortty P (2006) Dynamics of nonlinear porous media with applications to soil liquefaction. Soil Dyn Earthq Eng 26(6–7):648–665CrossRefGoogle Scholar
  50. 50.
    Porter KA (2003) An overview of PEER’s performance-based earthquake engineering methodology. In: Ninth international conference on applications of statistics and probability in civil engineering (ICASP9) July 6–9, 2003, San FranciscoGoogle Scholar
  51. 51.
    Roscoe KH, Schofield AN, Wroth CP (1958) On the yielding of soils. Géotechnique 8(1):22–52CrossRefGoogle Scholar
  52. 52.
    Ruiz S, Saragoni GR (2009) Free vibration of soils during large earthquakes. Soil Dyn Earthq Eng 29:1–16.  https://doi.org/10.1016/j.soildyn.2008.01.005 CrossRefGoogle Scholar
  53. 53.
    Sadeghi H, Kimoto S, Oka F, Shahbodagh B (2014) Dynamic analysis of river embankments during earthquakes using a finite deformation FE analysis method. In: 14th International conference of the international association for computer methods and advances in geomechanics, Kyoto, Japan, 2011, pp 637–642Google Scholar
  54. 54.
    Saez E (2009) Dynamic nonlinear soil-structure interaction. PhD thesis, Ecole Centrale ParisGoogle Scholar
  55. 55.
    Sasaki Y, Tamura K (2007) Failure mode of embankments due to recent earthquakes in Japan. In: 4th International conference on earthquake geotechnical engineering, Thessaloniki, Greece, 1479Google Scholar
  56. 56.
    Schofield AN, Wroth CP (1968) Critical state soil mechanics. McGraw-Hill, LondonGoogle Scholar
  57. 57.
    Seed HB, Idriss IM (1970) Soil moduli and damping factors for dynamic response analysis. Tech. rep., University of California, BerkeleyGoogle Scholar
  58. 58.
    Sharp MK, Adalier K (2006) Seismic response of earth dam with varying depth of liquefiable foundation layer. Soil Dyn Earthq Eng 26:1028–1037CrossRefGoogle Scholar
  59. 59.
    Singh R, Roy D, Jain SK (2005) Analysis of earth dams affected by the 2001 Bhuj Earthquake. Eng Geol 80(3–4):282–291CrossRefGoogle Scholar
  60. 60.
    Stamatopoulos C, Aneroussis S (2004) Sliding-block back analyses of liquefaction-induced slides. In: 13th World conference on earthquake engineering, Vancouver, BC, Canada, August 1–6, 2004, 3209Google Scholar
  61. 61.
    Swaisgood JR (2003) Embankment dam deformation caused by earthquakes. In: Pacific conference on earthquake engineeringGoogle Scholar
  62. 62.
    Terzaghi K, Peck RB (1967) Soil mechanics in engineering practice. Wiley, New YorkGoogle Scholar
  63. 63.
    Xia ZF, Ye GI, Wang JH, Ye B, Zang F (2010) Fully coupled numerical analysis of repeated shake-consolidation process of earth embankment on liquefiable foundation. Soil Dyn Earthq Eng 30(11):1309–1318.  https://doi.org/10.1016/j.soildyn.2010.06.003 CrossRefGoogle Scholar
  64. 64.
    Zhang JM, Wang G (2012) Large post-liquefaction deformation of sand, part I: physical mechanism, constitutive description and numerical algorithm. Acta Geotech 7:69–113CrossRefGoogle Scholar
  65. 65.
    Zienkiewicz OC, Chang CT, Bettess P (1980) Drained, undrained, consolidating and dynamic behaviour assumptions in soils. Géotechnique 30(4):385–395CrossRefGoogle Scholar
  66. 66.
    Zienkiewicz OC, Chan AHC, Pastor M, Paul DK, Shiomi T (1990) Static and dynamic behaviour of soils: a rational approach to quantitative solutions. I. Fully saturated problems. In: Royal Society of London. Series A, mathematical and physical sciences, June, pp 285–309.  https://doi.org/10.1098/rspa.1990.0061

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ioanna Rapti
    • 1
    • 2
    • 3
    Email author
  • Fernando Lopez-Caballero
    • 1
  • Arezou Modaressi-Farahmand-Razavi
    • 1
  • Alexandre Foucault
    • 2
    • 3
  • Francois Voldoire
    • 2
    • 3
  1. 1.Laboratoire MSS-Mat CNRS UMR 8579CentraleSupélec Paris-Saclay UniversityGif-Sur-YvetteFrance
  2. 2.Institut des Sciences de la Mécanique et Applications IndustriellesEDF-CNRS-CEA-ENSTA UMR 9219PalaiseauFrance
  3. 3.EDF R&D DivisionPalaiseauFrance

Personalised recommendations