Acta Geotechnica

, Volume 12, Issue 3, pp 463–478 | Cite as

A geotechnical perspective of raw earth building

  • Domenico GallipoliEmail author
  • Agostino Walter Bruno
  • Céline Perlot
  • Joao Mendes
Review Paper


Much research has been devoted over the past 30 years to the development of construction materials that can lower the environmental and economic costs of buildings over their entire life by reducing embodied energy, minimizing air conditioning needs and cutting down demolition waste. In this respect, raw earth is an attractive material because it is natural and largely available. In its simplest form, this material consists of a compacted mixture of soil and water which is put in place with the least possible transformation. Raw earth construction has been practised in ancient times but has only recently been rediscovered thanks to modern technology, which has improved fabrication efficiency. If properly manufactured, raw earth exhibits comparable mechanical characteristics and better hygro-thermal properties than concrete or fired bricks. After a brief historical overview, we discuss the advantages of raw earth construction in terms of environmental impact, energy consumption and indoor air quality together with the main obstacles to its wider dissemination. We also review the hydro-thermo-mechanical behaviour of raw earth in the context of the recent geotechnical literature, by examining the dependency of key parameters such as strength, stiffness and moisture retention on: (a) material variables (e.g. particle size and mineralogy), (b) manufacturing variables (e.g. density and stabilization) and (c) environmental variables (e.g. pore suction, ambient humidity and temperature).


Compressed earth blocks Earthen construction Rammed earth Raw earth Soil compaction Suction 



The financial contributions of the “Conseil régional d’Aquitaine” and the “Agglomération Côte Basque Adour” through the project MECAD “Matériaux Eco-renforcés pour la Construction et l’Aménagement Durable” (dossier n. 20131101001) are gratefully acknowledged.


  1. 1.
    AFNOR (1999) NF P 94-093. Soils: investigation and testing—determination of the compaction characteristics of a soil—Standars Proctor test—Modified Proctor testGoogle Scholar
  2. 2.
    ASTM C270 (2004) American Society for Testing and Materials. Standard Specification for Mortar for Unit MasonryGoogle Scholar
  3. 3.
    Beckett CTS, Augarde CE (2012) The effect of humidity and temperature on the compressive strength of rammed earth. In: Proceedings of 2nd European conference on unsaturated soils. Naples, Italy, 20–22 June 2012, Springer, pp 287–292. ISBN: 978-3-642-31342-4Google Scholar
  4. 4.
    Bossink BAG, Brouwers HJH (1996) Construction waste: quantification and source evaluation. J Constr Eng Manag 122(1):55–60. ISSN 0733-9364Google Scholar
  5. 5.
    Bossink BAG, Brouwers HJH, van Kessel RA (1996) Financial consequences of construction waste. In: Proceedings of international conference CIB W98, pp 1–15. Beijing, China, 21–24 October 1996Google Scholar
  6. 6.
    British Building Regulations (2010) Approved Document E: resistance to the Passage of Sound, published by the National Building Specification (NBS) part of the Royal Institute of British Architects (RIBA) Enterprises LtdGoogle Scholar
  7. 7.
    British Standard 1377 (1990) Methods of test for soils for civil engineering purposes. British Standards Institute, LondonGoogle Scholar
  8. 8.
    British Standard 8233 (1999) Sound insulation and noise reduction for buildings: code of practice. British Standards Institute, LondonGoogle Scholar
  9. 9.
    Bruno AW, Gallipoli D, Perlot C, Mendes J, Salmon N (2015) Mechanical properties of unstabilized earth compressed at high pressures. In: Proceedings of 1st international conference on bio-based building materials, 21st–24th June 2015Google Scholar
  10. 10.
    Bui Q-B, Morel JC, Hans S, Walker P (2014) Effects of moisture content on the mechanical characteristics of rammed earth. Constr Build Mater 54:163–169. doi: 10.1016/j.conbuildmat.2013.12.067 CrossRefGoogle Scholar
  11. 11.
    Bui QB, Morel JC, Venkatarama Reddy BV, Ghayad W (2008) Durability of rammed earth walls exposed for 20 years to natural weathering. Build Environ 44:912–919. doi: 10.1016/j.buildenv.2008.07.001 CrossRefGoogle Scholar
  12. 12.
    Bui Q-B, Morel JC, Hans S, Meunier N (2009) Compression behaviour of nonindustrial materials in civil engineering by three scale experiments: the case of rammed earth. Mater Struct 42(8):1101–1116CrossRefGoogle Scholar
  13. 13.
    Chilkoti A (2012) Mud world. Financial Times, 19 October 2012. Last accessed: 19 June 2015
  14. 14.
    Cointeraux F (1790–1791) École d’architecture rurale. Premier, deuxième, troisième et quatrième cahier. Published by Vezard & Le NormantGoogle Scholar
  15. 15.
    Crowley M (1997) Quality control for earth structures. Aust Inst Build Pap 8:109–118Google Scholar
  16. 16.
    Dahmen AJ (2015) Who’s afraid of raw earth? Experimental wall in New England and the environmental cost of stabilization. In: Proceedings of the first international conference on rammed earth construction (ICREC2015). pp 85–88. Perth, Australia, 10–13 February 2015Google Scholar
  17. 17.
    Davidovits J (2011) Geopolymer chemistry and applications, 3rd edn. Institut GéopolymèreGoogle Scholar
  18. 18.
    Deboucha S, Hashim R (2011) A review on bricks and stabilized compressed earth blocks. Sci Res Essays 6(3): 499–506. doi: 10.5897/SRE09.356. ISSN 1992-2248
  19. 19.
    Dierks K, Ziegert C (2002) Neue Untersuchungen zum Materialverhaltenvon Stampflehm. In: Steingass P (ed) Moderner Lehmbau. Tagungsband, Fraunhofer IRBGoogle Scholar
  20. 20.
    EEA (2010) The European environment state and outlook 2010. Material resources and waste. European Environment Agency, CopenaghenGoogle Scholar
  21. 21.
    Elert K, Pardo ES, Rodriguez-Navarro C (2015) Alkaline activation as an alternative method for the consolidation of earthen architecture. J Cult Herit 16:461–469. doi: 10.1016/j.culher.2014.09.012 CrossRefGoogle Scholar
  22. 22.
    Eckermann W, Ziegert C (2006) Auswirkung von Lehmbaustoffen auf die Raumluftfeuchte. Accessed online: 22 June 2016
  23. 23.
    Eurostat (2011) Online statistics.
  24. 24.
    Guettala A, Abibsi A, Houari H (2006) Durability study of stabilized earth concrete under both laboratory and climatic conditions exposure. Constr Build Mater 20(3):119–127. doi: 10.1016/j.conbuildmat.2005.02.001 CrossRefGoogle Scholar
  25. 25.
    Guettala A, Guenfoud M (1997) Béton de terre stabilisée propriétés physico-mécanique et influence des types d’argiles. Revue La Technique Moderne 1–2:21–26Google Scholar
  26. 26.
    Guillaud H (2008) Characterization of earthen materials. In: Avrami E, Guillaud H, Hardy M (eds) Terra literature review—an overview of research in earthen architecture conservation. The Getty Conservation Institute, Los Angeles (United States), pp 21–31Google Scholar
  27. 27.
    Hall M, Djerbib Y (2004) Moisture ingress in rammed earth: part 1—the effect of soil particle-size distribution on the rate of capillary suction. Constr Build Mater 18:269–280. doi: 10.1016/j.conbuildmat.2003.11.002 CrossRefGoogle Scholar
  28. 28.
    Houben H, Guillaud H (1994) Earth construction, a comprehensive guide. Intermediate Technology Publications, LondonGoogle Scholar
  29. 29.
    Houben H, Guillaud H (1996) Earth construction—a comprehensive guide, 2nd edn. Intermediate Technology Publications, LondonGoogle Scholar
  30. 30.
    Houben H, Guillaud H (2006) Traité de construction en terre. Parenthèse, MarseilleGoogle Scholar
  31. 31.
    Jaquin PA, Augarde CE, Legrand L (2008) Unsaturated characteristics of rammed earth. In: Proceedings of 1st European conference on unsaturated soils, pp 417–422. Durham, UK, 2–4 July 2008, CRC Press/Balkema. ISBN: 978-0-415-47692-8Google Scholar
  32. 32.
    Jaquin PA, Augarde CE, Gallipoli D, Toll DG (2009) The strength of rammed earth materials. Géotechnique 59(5):487–490. doi: 10.1680/geot.2007.00129 CrossRefGoogle Scholar
  33. 33.
    Jiménez Delagado MC, Cañas Guerrero I (2007) The selection of soils for unstabilised earth building: a normative review. Constr Build Mater 21:237–251. doi: 10.1016/j.conbuildmat.2005.08.006 CrossRefGoogle Scholar
  34. 34.
    Keable J (1996) Rammed earth structures. A code of practice. Intermediate Technology Publications, LondonCrossRefGoogle Scholar
  35. 35.
    Kebao R, Kagi D (2012) Integral admixtures and surface treatments for modern earth buildings. Mod Earth Build. doi: 10.1533/9780857096166.2.256 Google Scholar
  36. 36.
    Kemp B (2000) Soil. In: Nicholson PT, Shaw I (eds) Ancient Egyptian materials and technology (including mud-brick architecture). Cambridge University Press, Cambridge, pp 78–103Google Scholar
  37. 37.
    Kouakou CH, Morel JC (2009) Strength and elasto-plastic properties of non-industrial materials manufactured with clays as a natural binder. Appl Clay Sci 44:27–34. doi: 10.1016/j.clay.2008.12.019 CrossRefGoogle Scholar
  38. 38.
    Langenbach R (2004) Soil dynamics and the earthquake destruction of the Arg-e Bam. Iran J Seismol Earthq Eng 5(4):133–151Google Scholar
  39. 39.
    Lawson B, Rudder D (1996) Building materials, energy and the environment: towards ecologically sustainable development. Royal Australian Institute of Architects, 135 ppGoogle Scholar
  40. 40.
    Lax C (2010) Life cycle assessment of rammed earth. Masters thesis, University of Bath, United KingdomGoogle Scholar
  41. 41.
    Little B, Morton T (2001) Building with earth in Scotland: innovative design and sustainability. Scottish Executive Central Research Unit PublicationGoogle Scholar
  42. 42.
    Lucas R (1918) Ueber das Zeitgesetz des Kapillaren Aufstiegs von Flussigkeiten. Kolloid Z 23(15):22Google Scholar
  43. 43.
    Maniatidis V, Walker P (2003) A review of rammed earth construction—DTi Partners in Innovation Project ‘Developing Rammed Earth for UK Housing’. Natural Building Technology Group, University of Bath, UKGoogle Scholar
  44. 44.
    McGregor F, Heath A, Fodde E, Shea A (2014) Conditions affecting the moisture buffering measurement performed on compressed earth blocks. Build Environ 75:11–18. doi: 10.1016/j.buildenv.2014.01.009 CrossRefGoogle Scholar
  45. 45.
    McGregor F, Heath A, Maskell D, Fabbri A, Morel JC (2016) A review on the buffering capacity of earth building materials. In: Proceedings of the Institution of Civil Engineers—Construction Materials. doi: 10.1680/jcoma.15.00035
  46. 46.
    McHenry PG (1984) Adobe and rammed earth buildings. Design and construction. Wiley, New YorkGoogle Scholar
  47. 47.
    Morel JC, Pkla A, Walker P (2007) Compressive strength testing of compressed earth blocks. Constr Build Mater 21(2007):303–309. doi: 10.1016/j.conbuildmat.2005.08.021 CrossRefGoogle Scholar
  48. 48.
    Norton J (1997) Building with Earth. A handbook, 2nd edn. Intermediate Technology Publications, LondonCrossRefGoogle Scholar
  49. 49.
    OECD (2003) Environmentally sustainable buildings: challenges and policiesGoogle Scholar
  50. 50.
    Olivier M, Mesbah A (1986) Le matériau terre: Essai de compactage statique pour la fabrication de briques de terre compressées. Bulletin de liaison du Laboratoire des Ponts et Chaussé, Paris, France 146:37–43Google Scholar
  51. 51.
    Radanovic J (1996) Design criteria for reinforced stabilised earth structures. University of Western Australia, CrawleyGoogle Scholar
  52. 52.
    Röhlen U, Ziegert C (2013) Construire en terre crue. Groupe Moniteur, Éditions du moniteur, Paris, France. ISBN: 9782-281-11567-3Google Scholar
  53. 53.
    SAZS 724 (2001) Zimbabwe Standard. Rammed earth structures. Standards Association of Zimbabwe, HarareGoogle Scholar
  54. 54.
    Slaty F, Khury H, Rahier H, Wastiels J (2015) Durability of alkali activated cement produced from kaolinitic clay. Appl Clay Sci 104:229–237. doi: 10.1016/j.clay.2014.11.037 CrossRefGoogle Scholar
  55. 55.
    Schrader CA (1981) Rammed earth construction: a re-emerging technology. In: Proceedings 6th natural passive solar conferenceGoogle Scholar
  56. 56.
    Szalay AZ-Z (2007) What is missing from the concept of the new European building directive? Build Environ 42(4):1761–1769CrossRefGoogle Scholar
  57. 57.
    Washburn EW (1921) The dynamics of capillary flow. Phys Rev 17(3):273CrossRefGoogle Scholar
  58. 58.
    Worrell E, Price L, Martin N, Hendriks C, Meida LO (2001) Carbon dioxide emissions from the global cement industry. Annu Rev Energy Environ 26(1):303–329. doi: 10.1146/ CrossRefGoogle Scholar
  59. 59.
    Wu F, Li G, Li H-N, Jia J-Q (2012) Strength and stress–strain characteristics of traditional adobe block and masonry. Mater Struct 46:1449–1457. doi: 10.1617/s11527-012-9987-y CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Université de Pau et des Pays de l’AdourPauFrance
  2. 2.Laboratoire SIAME - Bâtiment ISABTPUniversité de Pau et des Pays de l’AdourAngletFrance

Personalised recommendations