Acta Geotechnica

, Volume 11, Issue 6, pp 1263–1285 | Cite as

On the simulation of multidimensional cyclic loading with intergranular strain

Research Paper


A sample of soil is subjected to multidimensional cyclic loading when two or three principal components of the stress or strain tensor are simultaneously controlled to perform a repetitive path. These paths are very useful to evaluate the performance of models simulating cyclic loading. In this article, an extension of an existing constitutive model is proposed to capture the behavior of the soil under this type of loading. The reference model is based on the intergranular strain anisotropy concept and therefore incorporates an elastic locus in terms of a strain amplitude. In order to evaluate the model performance, a modified triaxial apparatus able to perform multidimensional cyclic loading has been used to conduct some experiments with a fine sand. Simulations of the extended model with multidimensional loading paths are carefully analyzed. Considering that many cycles are simulated (\(N>30\)), some additional simulations have been performed to quantify and analyze the artificial accumulation generated by the (hypo-)elastic component of the model. At the end, a simple boundary value problem with a cyclic loading as boundary condition is simulated to analyze the model response.


Constitutive model Hypoplasticity Intergranular strain ISA-plasticity Multidimensional cyclic loading 


  1. 1.
    Andersen K (2009) Bearing capacity under cyclic loading-offshore, along coast, and on land. The 21st Bjerrum lecture. Can Geotech J 46(5):513–535CrossRefGoogle Scholar
  2. 2.
    Andersen K, Lauritzsen R (1988) Bearing capacity for foundation with cyclic loads. J Geotech Eng ASCE 114(5):540–555CrossRefGoogle Scholar
  3. 3.
    Andersen K, Lauritzsen R (1989) Model tests of offshore platforms II. Interpretation. J Geotech Eng ASCE 115(11):1550–1568CrossRefGoogle Scholar
  4. 4.
    Badellas A, Savvaidis P, Tsotos S (1988) Settlement measurement of a liquid storage tank founded on 112 long bored piles. In: Second international conference on field measurements in geomechanics, Kobe, pp 435–442Google Scholar
  5. 5.
    Bauer E (1992) Zum mechanischem verhalten granularer stoffe unter vorwiegend ödometrischer beanspruchung. In: Veröffentlichungen des Institutes für Bodenmechanik und Felsmechanik der Universität Fridericiana in Karlsruhe, Karlsruhe, Germany, Heft 130, pp 1–13Google Scholar
  6. 6.
    Bauer E (1996) Calibration of a comprehensive constitutive equation for granular materials. Soils Found 36(1):13–26CrossRefGoogle Scholar
  7. 7.
    Bernardie S, Foerster E, Modaressi H (2006) Non-linear site response simulations in Chang-Hwa region during the 1999 Chi-Chi earthquake, Taiwan. Soil Dyn Earthq Eng 26(11):1038–1048CrossRefGoogle Scholar
  8. 8.
    Bjerrum L (1973) Geotechnical problems involved in foundations of structures in the North Sea. Géotechnique 23(3):319–358CrossRefGoogle Scholar
  9. 9.
    Borja R, Tamagnini C, Amorosi A (1997) Coupling plasticity and energy conserving elasticity models for clays. J Geotech Geoenviron Eng ASCE 123(10):948–957CrossRefGoogle Scholar
  10. 10.
    Boyce H (1980) A non-linearmodel for the elastic behaviour of granular materials under repeated loading. In: Pande GN, Zienkiewicz OC (eds) Soils under cyclic and transient loading. A.A. Balkema, Swansea, pp 285–294Google Scholar
  11. 11.
    Dafalias Y (1986) Bounding surface plasticity. I: mathematical foundation and hypoplasticity. J Eng Mech ASCE 112(9):966–987CrossRefGoogle Scholar
  12. 12.
    Dafalias Y, Herrmann L (1982) Bounding surface formulation of soil plasticity. In: Pande G, Zienkiewicz O (eds) Transient and cyclic loads, chapter 10. Wiley, New York, pp 253–282Google Scholar
  13. 13.
    El Far A, Davie J (2008) Tank settlement due to highly plastic clays. In: Prakash S (ed) Sixth International conference on case histories in geotechnical engineering, MI University, Arlington, p 32Google Scholar
  14. 14.
    Fellenius B, Ochoa M (2013) Large liquid storage tanks on piled foundations. In: Hai NM (ed) International conference on foundation on soft ground engineering-challenges in the Mekong Delta, HoChiMinh City, pp 3–17Google Scholar
  15. 15.
    Finn W (2000) State-of-the-art of geotechnical earthquake engineering practice. Soil Dyn Earthq Eng 20(1–4):1–15CrossRefGoogle Scholar
  16. 16.
    Fuentes W (2014) Contributions in Mechanical Modelling of Fill Materials. Schriftenreihe des Institutes für Bodenmechanik und Felsmechanik des Karlsruher Institut für Technologie, Heft 179Google Scholar
  17. 17.
    Fuentes W, Triantafyllidis T (2015) ISA model: a constitutive model for soils with yield surface in the intergranular strain space. Int J Numer Anal Methods Geomech 39(11):1235–1254CrossRefGoogle Scholar
  18. 18.
    Fuentes W, Triantafyllidis T, Lizcano A (2012) Hypoplastic model for sands with loading surface. Acta Geotech 7(3):177–192CrossRefGoogle Scholar
  19. 19.
    Gajo A (2009) Hyperelsatic modelling of small-strain stiffness anisotropy of cyclically loaded sand. Int J Numer Anal Methods Geomech 34(2):111–134MATHGoogle Scholar
  20. 20.
    Gazetas G (1983) Analysis of machine foundation vibrations: state of the art. Soil Dyn Earthq Eng 2(1):2–42Google Scholar
  21. 21.
    Herle I, Gudehus G (1999) Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies. Mech Cohesive-Frict Mater 4(5):461–486CrossRefGoogle Scholar
  22. 22.
    Herle I, Kolymbas D (2004) Hypoplasticity for soils with low friction angles. Comput Geotech 31(5):365–373CrossRefGoogle Scholar
  23. 23.
    Huber G (1988) Erschtterungsausbreitung beim Rad/Schiene-System. Institut für Bodenmechanik und Felsmechanik der Universität Fridericiana in Karlsruhe, Heft Nr. 115Google Scholar
  24. 24.
    Hughes TJR (1998) Classical rate-independent plasticity and viscoplasticity. In: Marsden JE, Sirovich L, Wiggins S (eds) Computational inelasticity, vol 7. Springer, New York Google Scholar
  25. 25.
    Iraji A, Farzaneh O, Hosseininia E (2014) A modification to dense sand dynamic simulation capability of Pastor–Zienkiewicz–Chan model. Acta Geotech 9(2):343–353CrossRefGoogle Scholar
  26. 26.
    Ishihara K (1993) Liquefaction and flow failure during earthquakes. The 33rd Rankine lecture. Géotechnique 43(3):351–415CrossRefGoogle Scholar
  27. 27.
    Kim D-S, Lee J-S (2000) Propagation and attenuation characteristics of various ground vibrations. Soil Dyn Earthq Eng 19(2):115–126CrossRefGoogle Scholar
  28. 28.
    Kolymbas D (1988) Eine konstitutive Theorie für Boden und andere körmige Stoffe. Habilitation Thesis, Universität Karlsruhe, Germany. Institut für Boden- und Felsmechanik, Heft 109Google Scholar
  29. 29.
    Li Z, Kotronis P, Escoffier S, Tamagnini C (2016) A hypoplastic macroelement for single vertical piles in sand subject to three-dimensional loading conditions. Acta Geotech 11(2):373–390CrossRefGoogle Scholar
  30. 30.
    Luco J, Westmann R (1972) Dynamic response of a rigid footing bonded to an elastic half space. J Appl Mech 39(2):169–193CrossRefGoogle Scholar
  31. 31.
    Masin D (2005) A hypoplastic constitutive model for clays. Int J Numer Anal Methods Geomech 29(4):311–336CrossRefMATHGoogle Scholar
  32. 32.
    Matsuoka H, Nakai T (1977) Stress–strain relationship of soil based on the SMP. In: Proceedings of speciality session 9, IX international conference on soil mechanic foundation engineering, Tokyo, 1977, pp 153–162Google Scholar
  33. 33.
    Mroz Z (1967) On the description of anisotropic workhardening. J Mech Phys Solids 15(3):163–175MathSciNetCrossRefGoogle Scholar
  34. 34.
    Mroz Z (1969) An attempt to describe the behavior of metals under cyclic loads using a more general working hardening model. Acta Mech 7:199–212MathSciNetCrossRefGoogle Scholar
  35. 35.
    Mroz Z, Norris A, Zienkiewicz O (1978) An anisotropic hardening model for soils and its application to cyclic loading. Int J Numer Anal Methods Geomech 2(3):203–221CrossRefMATHGoogle Scholar
  36. 36.
    Mylonakis G, Nikolaou S, Gazetas G (2006) Footings under seismic loading: analysis and design issues with emphasis on bridge foundations. Soil Dyn Earthq Eng 26(9):824–853CrossRefGoogle Scholar
  37. 37.
    Niemunis A (2003) Extended Hypoplastic Models for Soils. Habilitation, Schriftenreihe des Institutes für Grundbau und Bodenmechanil der Ruhr-Universität Bochum, Germany, 2003. Heft 34Google Scholar
  38. 38.
    Niemunis A (2008) Incremental driver, user’s manual. University Karlsruhe KIT, KarlsruheGoogle Scholar
  39. 39.
    Niemunis A, Cudny M (1998) On hyperelasticity for clays. Comput Geotech 23(4):221–236CrossRefGoogle Scholar
  40. 40.
    Niemunis A, Herle I (1997) Hypoplastic model for cohesionless soils with elastic strain range. Mech Cohesive-Frict Mater 2(4):279–299CrossRefGoogle Scholar
  41. 41.
    Osinov VA, Chrisopoulos S, Triantafyllidis T (2013) Numerical study of the deformation of saturated soil in the vicinity of a vibrating pile. Acta Geotech 8(4):439–446CrossRefGoogle Scholar
  42. 42.
    Oztoprak S, Bolton MD (2013) Stiffness of sands through a laboratory test database. Géotechnique 63(1):54–70CrossRefGoogle Scholar
  43. 43.
    Pastor M, Zienkiewicz O, Chan A (1990) Generalized plasticity and modeling of soil behavior. Int J Numer Anal Methods Geomech 14(3):151–190CrossRefMATHGoogle Scholar
  44. 44.
    Poblete M, Wichtmann T, Niemunis A, Triantafyllidis Th (2011) Accumulation of residual deformations due to cyclic loading with multidimensional strain loops. In: 5th international conference on earthquake engineering, Santiago, Chile, January 2011Google Scholar
  45. 45.
    Poblete M, Wichtmann T, Niemunis A, Triantafyllidis Th (2015) Caracterización cíclica multidimensional de suelos no cohesivos. Obras y Proyectos 17:31–37CrossRefGoogle Scholar
  46. 46.
    Rascol E (2009) Cyclic properties of sand: dynamic behaviour for seismic applications. Ph.D. thesis, École Polythecnique Fédérale de LausanneGoogle Scholar
  47. 47.
    Richart F, Hall J, Woods R (1970) Vibrations of soils and foundations. Prentice-Hall, Englewood CliffsGoogle Scholar
  48. 48.
    Richart F, Whitman R (1967) Comparison of footing vibration tests with theory. J Soil Mech Found Div ASCE 93(6):143–168Google Scholar
  49. 49.
    Shi X, Herle I (1010) Numerical simulation of lumpy soils using a hypoplastic model. Acta Geotech. doi:10.1007/s11440-016-0447-7 Google Scholar
  50. 50.
    Siddiquee M (2015) A pressure-sensitive kinematic hardening model incorporating masing’s law. Acta Geotech 10(5):623–642CrossRefGoogle Scholar
  51. 51.
    Simpson B (1992) Retaining structures: displacement and design. Géotechnique 42(4):541–576CrossRefGoogle Scholar
  52. 52.
    Triantafyllidis Th, Wichtmann T, Fuentes W (2013) Zustände der grenztragfähigkeit und gebrauchstauglichkeit von böden unter zyklischer belastung. In: Schanz T, Hettler A (eds) Aktuelle Forschung in der Bodenmechanik 2013. Springer, Berlin, pp 147–176Google Scholar
  53. 53.
    Vermeer P (1982) A five constant model unifying well established concepts. In: Gudehus G (ed) International workshop on constitutive relations for soils, Grenoble, pp 175–198Google Scholar
  54. 54.
    Wegener D, Herle I (2014) Prediction of permanent soil deformations due to cyclic shearing with a hypoplastic constitutive model. Acta Geotech 37:113–122CrossRefGoogle Scholar
  55. 55.
    Weifner T, Kolymbas D (2007) A hypoplastic model for clay and sand. Acta Geotech 2(2):103–112CrossRefGoogle Scholar
  56. 56.
    Whitman R, Richart F (1967) Design procedures for dynamically loaded foundations. J Soil Mech Found Div ASCE 93(6):169–193Google Scholar
  57. 57.
    Wichtmann T (2005) Explicit accumulation model for non-cohesive soils under cyclic loading. Dissertation, Schriftenreihe des Institutes für Grundbau und Bodenmechanik der Ruhr-Universität Bochum, Heft 38.
  58. 58.
    Wichtmann T, Niemunis A, Triantafyllidis Th (2013) On the “elastic” stiffness in a high-cycle accumulation model—continued investigations. Can Geotech J 50(12):1260–1272CrossRefGoogle Scholar
  59. 59.
    Wolffersdorff V (1996) A hypoplastic relation for granular materials with a predefined limit state surface. Mech Cohesive-Frict Mater 1(3):251–271CrossRefGoogle Scholar
  60. 60.
    Wu W, Bauer E (1994) A simple hypoplastic constitutive model for sand. Int J Numer Anal Methods Geomech 18(12):833–862CrossRefMATHGoogle Scholar
  61. 61.
    Wu W, Niemunis A (1996) Failure criterion, flow rule and dissipation function derived from hypoplasticity. Mech Cohesive-Frict Mater 1(2):145–163CrossRefGoogle Scholar
  62. 62.
    Zienkiewicz O, Mroz Z (1984) Generalized plasticity formulation and application to geomechanics. In: Desai C, Gallagher R (eds) Mechanics of engineering materials. Wiley, New York, pp 655–679Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Civil EngineeringUniversidad Católica de la Santísima Concepción, ConcepciónConcepciónChile
  2. 2.University del NorteBarranquillaColombia
  3. 3.Institute of Soil Mechanics and Rock MechanicsKarlsruhe Institute of Technology KITKarlsruheGermany

Personalised recommendations