Acta Geotechnica

, Volume 11, Issue 3, pp 643–657 | Cite as

A multiresolution strategy for solving landslides using the Particle Finite Element Method

Research Paper
  • 307 Downloads

Abstract

We present an approach for the simulation of landslides using the Particle Finite Element Method of the second generation. In this work, the multiphase nature (granular phase and water) of the phenomenon is considered in a staggered fashion using a single, indeformable Finite Element mesh. A fractional step and a monolithic strategy are used for the water flow and granular phase, respectively. In this way, the maximum accuracy with minimal computational times is reached. The method is completed by adding the interaction terms due to drag and pressure forces, together with a moving mesh strategy to reduce the size of the computational domain.

Keywords

Landslides Multiphase PFEM-2 

Notes

Acknowledgments

This research has been partly funded by the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/ under REA grant agreement n 289911. This work was also supported by the ERC Advanced Grant REALTIME project AdG-2009325, the ERC Advanced Grant SAFECON project AdG-26752, the ERC Proof of concept FORECAST \(\hbox {n}^\circ\)664910 and the PARFLOW project of the I+D+i National Plan of the Spanish Ministry of Economy and Competitiveness BIA2013-49007-C2-1-R.

References

  1. 1.
    Becker P (2015) An enhanced particle finite element method with special emphasis on landslides and debris flows. Ph.D. thesis, Universitat Politècnica de CatalunyaGoogle Scholar
  2. 2.
    Becker P, Idelsohn S, Oñate E (2014) A unified monolithic approach for multi-fluid flows and fluid–structure interaction using the particle finite element method with fixed mesh. Comput Mech 1:122MATHGoogle Scholar
  3. 3.
    Bui HH, Fukagawa R, Sako K, Ohno S (2008) Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic-plastic soil constitutive model. Int J Numer Anal Methods Geomech 32(12):1537–1570CrossRefMATHGoogle Scholar
  4. 4.
    Cai Y, Zhu H, Zhuang X (2013) A continuous/discontinuous deformation analysis (CDDA) method based on deformable blocks for fracture modeling. Front Struct Civil Eng 7(4):369–378CrossRefGoogle Scholar
  5. 5.
    Chorin AJ (1967) A numerical method for solving incompressible viscous flow problems. J Comput Phys 2(1):12–26CrossRefMATHGoogle Scholar
  6. 6.
    Codina R (2000) Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods. Comput Method Appl M 190(13):1579–1599MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Coppola H (2009) A finite element model for free surface and two fluid flows on fixed meshes. Ph.D. thesis, Universitat Politècnica de CatalunyaGoogle Scholar
  8. 8.
    Ergun S, Orning AA (1949) Fluid flow through randomly packed columns and fluidized beds. Ind Eng Chem 41(6):1179–1184CrossRefGoogle Scholar
  9. 9.
    Fritz HM (2001) Lituya bay case rockslide impact and wave run-up. Sci Tsunami Hazards 19(1):3–22Google Scholar
  10. 10.
    Heller V (2007) Landslide generated impulse waves: prediction of near field characteristics. Ph.D. thesis, ETH ZURICHGoogle Scholar
  11. 11.
    Idelsohn S, Nigro N, Limache A, Oñate E (2012) Large time-step explicit integration method for solving problems with dominant convection. Comput Methods Appl MechEng 217:168–185MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Idelsohn SR, Marti J, Becker P, Oñate E (2014) Analysis of multifluid flows with large time steps using the particle finite element method. Int J Numer Meth Fluids 75(9):621–644MathSciNetCrossRefGoogle Scholar
  13. 13.
    Larese A, Rossi R, Oñate E, Idelsohn S (2012) A coupled PFEM- Eulerian approach for the solution of porous FSI problems. Comput Mech 50(6):805–819Google Scholar
  14. 14.
    Larese A, Rossi R, Onate E, Idelsohn S (2012) A coupled PFEM-Eulerian approach for the solution of porous FSI problems. Comput Mech 50(6):805–819MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Larese A, Rossi R, Oñate E, Toledo M, Moran R, Campos H (2013) Numerical and experimental study of overtopping and failure of rockfill dams. Int J Geomech 15(4):04014060Google Scholar
  16. 16.
    Papanastasiou TC (1987) Flows of materials with yield. J Rheol (1978-present) 31(5):385–404Google Scholar
  17. 17.
    Pinyol NM, Alonso EE (2010) Criteria for rapid sliding II: thermo-hydro-mechanical and scale effects in vaiont case. Eng Geol 114(3):211–227CrossRefGoogle Scholar
  18. 18.
    Quecedo M, Pastor M, Herreros M (2004) Numerical modelling of impulse wave generated by fast landslides. Int J Numer Methods Eng 59(12):1633–1656MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Rabczuk T, Areias P (2006) A new approach for modelling slip lines in geological materials with cohesive models. Int J Numer Anal Methods Geomech 30(11):1159–1172CrossRefMATHGoogle Scholar
  20. 20.
    Rabczuk T, Belytschko T (2004) Cracking particles: a simplified meshfree method for arbitrary evolving cracks. Int J Numer Methods Eng 61(13):2316–2343CrossRefMATHGoogle Scholar
  21. 21.
    Salazar F, Irazábal J, Larese A, Oñate E (2016) Numerical modelling of landslide-generated waves with the particle finite element method (PFEM) and a non-Newtonian flow model. Int J Numer Anal Methods Geomech 40(6):809–826CrossRefGoogle Scholar
  22. 22.
    Terzaghi K (1925) Principles of soil mechanics. Engineering News-Record (95)Google Scholar
  23. 23.
    Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28:1–44MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Wu W, Zhu H, Zhuang X, Ma G, Cai Y (2014) A multi-shell cover algorithm for contact detection in the three dimensional discontinuous deformation analysis. Theor Appl Fracture Mech 72:136–149CrossRefGoogle Scholar
  25. 25.
    Zaniboni F, Paparo MA, Tinti S (2013) The 1963 vajont landslide analysed through numerical modeling. In: International conference vajontGoogle Scholar
  26. 26.
    Zheng W, Zhuang X, Tannant DD, Cai Y, Nunoo S (2014) Unified continuum/discontinuum modeling framework for slope stability assessment. Eng Geol 179:90–101CrossRefGoogle Scholar
  27. 27.
    Zhu H, Wu W, Chen J, Ma G, Liu X, Zhuang X (2016) Integration of three dimensional discontinuous deformation analysis (dda) with binocular photogrammetry for stability analysis of tunnels in blocky rockmass. Tunnel Undergr Space Technol 51:30–40CrossRefGoogle Scholar
  28. 28.
    Zhu H, Zhuang X, Cai Y, Ma G (2011) High rock slope stability analysis using the enriched meshless shepard and least squares method. Int J Comput Methods 8(02):209–228MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE)BarcelonaSpain
  2. 2.Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain

Personalised recommendations