Acta Geotechnica

, Volume 12, Issue 1, pp 195–209 | Cite as

Numerical study of partially drained penetration and pore pressure dissipation in piezocone test

  • Francesca Ceccato
  • Paolo Simonini
Research Paper


The piezocone penetration test (CPTU) is commonly used as a fast and economical tool to identify soil profile and to estimate relevant material properties in soils ranging from fine to coarse-grained. Moreover, in the case of fine-grained soils (clays and silts), the consolidation coefficient and the permeability can be estimated through the dissipation test. Undrained conditions are commonly assumed for the interpretation of CPTU in fine-grained soils, but in soils such as silts, penetration may occur in partially drained conditions. This aspect is often neglected in data interpretation thus leading to an inaccurate estimate of soil properties. This paper investigates numerically the effect of partial drainage during penetration on the measured tip resistance and the subsequent pore pressure dissipation response contributing to a more accurate interpretation of field data. A realistic simulation of the cone penetration is achieved with the two-phase Material Point Method, modelling the soil response with the modified Cam-Clay model. The approach takes into account large soil deformations induced by the advancing cone, soil–water, and soil–structure interactions, as well as nonlinear soil behavior.


CPTU Dissipation test MPM Partial drainage 



The authors wish to express their gratitude to the MPM research group at Deltares, Delft, The Netherlands for the support during this work. Special thanks go to Prof. Pieter Vermeer, Dot. Lars Beuth, and Dot. Issam Jassim, for their help, without which this study would have been much more difficult.


  1. 1.
    Abe K, Soga K, Bandara S (2013) Material Point Method for coupled hydromechanical problems. J Geotech Geoenviron Eng 140:1–16. doi: 10.1061/(ASCE)GT.1943-5606.0001011 Google Scholar
  2. 2.
    Al-Kafaji IKJ (2013) Formulation of a dynamic material point method (MPM) for geomechanical problems. University of Stuttgart, StuttgartGoogle Scholar
  3. 3.
    Alonso EE, Zabala F (2011) Progressive failure of Aznalcóllar dam using the material point method. Géotechnique 61:795–808. doi: 10.1680/geot.9.P.134 CrossRefGoogle Scholar
  4. 4.
    Alonso EE, Yerro A, Pinyol NM (2015) Recent developments of the Material Point Method for the simulation of landslides. IOP Conf Ser Earth Environ Sci 26:012003. doi: 10.1088/1755-1315/26/1/012003 CrossRefGoogle Scholar
  5. 5.
    Andersen S, Andersen L (2010) Modelling of landslides with the material-point method. Comput Geosci 14:137–147. doi: 10.1007/s10596-009-9137-y CrossRefzbMATHGoogle Scholar
  6. 6.
    Bandara S, Soga K (2015) Coupling of soil deformation and pore fluid flow using material point method. Comput Geotech 63:199–214. doi: 10.1016/j.compgeo.2014.09.009 CrossRefGoogle Scholar
  7. 7.
    Bardenhagen SG, Guilkey JE, Roessig KM, Brackbill JU, Witzel WM, Foster JC (2001) An improved contact algorithm for the material point method and application to stress propagation in granular material. Comput Model Eng Sci 2:509–522zbMATHGoogle Scholar
  8. 8.
    Beuth L (2012) Formulation and application of a quasi-static material point method. University of Stuttgart, StuttgartGoogle Scholar
  9. 9.
    Beuth L, Vermeer PA (2013) Large deformation analysis of cone penetration testing in undrained clay. In: Hicks MA, Dijkstra J, LloretCabot M et al (eds) International conference on installation effects in geotechnical engineering (ICIEGE), Rotterdam, pp 1–7Google Scholar
  10. 10.
    Ceccato F (2014) Study of large deformation geomechanical problems with the Material Point Method. University of Padua, ItalyGoogle Scholar
  11. 11.
    Ceccato F, Beuth L, Vermeer PA, Simonini P (2014) Two-phase Material Point Method applied to cone penetration for different drainage conditions. In: Geomechanics from micro to macro—Proceedings of the TC105 ISSMGE international symposium on geomechanics from micro to macro, IS-Cambridge 2014, vol 2, pp 965–970Google Scholar
  12. 12.
    Chai J, Sheng D, Carter JP, Zhu H (2012) Coefficient of consolidation from non-standard piezocone dissipation curves. Comput Geotech 41:13–22. doi: 10.1016/j.compgeo.2011.11.005 CrossRefGoogle Scholar
  13. 13.
    Chung SF, Randolph MF, Schneider JA (2006) Effect of penetration rate on penetrometer resistance in clay. J Geotech Geoenviron Eng 132(9):1188–1196CrossRefGoogle Scholar
  14. 14.
    Coetzee CJ (2005) The material point method. Stellenbosch Publishers, StellenboschzbMATHGoogle Scholar
  15. 15.
    Coetzee CJ, Vermeer PA, Basson AH (2005) The modelling of anchors using the material point method. Int J Numer Anal Methods Geomech 29:879–895. doi: 10.1002/nag.439 CrossRefzbMATHGoogle Scholar
  16. 16.
    DeJong J, Randolph M (2012) Influence of partial consolidation during cone penetration on estimated soil behavior type and pore pressure dissipation measurements. J Geotech Geoenviron Eng. doi: 10.1061/(ASCE)GT.1943-5606.0000646 Google Scholar
  17. 17.
    Fahey M, Goh AL (1995) A comparison of pressuremeter and piezocone methods of determining the coefficient of consolidation. In: Press. its new Ave., pp 153–160Google Scholar
  18. 18.
    Finnie I, Randolph M (1994) Punch-through and liquefaction induced failure of shallow foundations on calcareous sediments. In: Proceedings of the international conference on behaviour of offshore structuresGoogle Scholar
  19. 19.
    Harlow F (1964) The particle-in-cell computing method for fluid dynamics. Methods Comput Phys 3:319–343Google Scholar
  20. 20.
    House A, Oliveira J, Randolph MF (2001) Evaluating the coefficient of consolidation using penetration tests. Int J Phys Model Geotech 1:17–26Google Scholar
  21. 21.
    Hu W, Chen Z (2003) A multi-mesh MPM for simulating the meshing process of spur gears. Comput Struct 81:1991–2002. doi: 10.1016/S0045-7949(03)00260-8 CrossRefGoogle Scholar
  22. 22.
    Jaeger R, DeJong J, Boulanger RW, Low HE, Randolph MF (2010) Variable penetration rate CPT in an intermediate soil. In: Proceedings, 2nd international symposium on cone penetration testingGoogle Scholar
  23. 23.
    Jassim I, Stolle D, Vermeer P (2013) Two-phase dynamic analysis by material point method. Int J Numer Anal Methods Geomech Anal methods Geomech 37:2502–2522. doi: 10.1002/nag CrossRefGoogle Scholar
  24. 24.
    Kim K, Prezzi M, Salgado R, Lee W (2008) Effect of penetration rate on cone penetration resistance in saturated clayey soils. J Geotech Geoenviron Eng 134(8):1142–1153CrossRefGoogle Scholar
  25. 25.
    Lehane BM, O’Loughlin CD, Randolph MF, Gaudin C (2009) Rate effects on penetrometer resistance in kaolin. Géotechnique 59:41–52. doi: 10.1680/geot.2007.00072 CrossRefGoogle Scholar
  26. 26.
    Levadoux J, Baligh M (1986) Consolidation after undrained piezocone penetration. I: prediction. J Geotech Eng 112:707–726CrossRefGoogle Scholar
  27. 27.
    Lim L (2014) On the application of the material point method for offshore foundations. In: Hicks M, Brinkgreve RBJ, Rohe A (eds) Numerical methods geotechnical engineering. Taylor and Francis Group, London, pp 253–258CrossRefGoogle Scholar
  28. 28.
    Love E, Sulsky D (2005) An energy consistent material point method for dynamic finite deformation plasticity. Albuquerque, New MexicozbMATHGoogle Scholar
  29. 29.
    Lunne T, Robertson P, Powell J (1997) Cone penetration testing in geotechnical practice. Chapman-Hall, LondonGoogle Scholar
  30. 30.
    Mahmoodzadeh H, Randolph M (2014) Penetrometer Testing: effect of partial consolidation on subsequent dissipation response. J Geotech Geoenviron Eng 04014022:1–12. doi: 10.1061/(ASCE)GT.1943-5606.0001114 Google Scholar
  31. 31.
    Mahmoodzadeh H, Randolph M, Wang D (2014) Numerical simulation of piezocone dissipation test in clays. Geotechnique 64:657–666CrossRefGoogle Scholar
  32. 32.
    Mieremet MMJ, Stolle DF, Ceccato F, Vuik C (2015) Numerical stability for modelling of dynamic two-phase interaction. Int J Numer Anal Methods Geomech. doi: 10.1002/nag.2483 Google Scholar
  33. 33.
    Oliveira JRMS, Almeida MSS, Motta HPG, Almeida MCF (2011) Influence of penetration rate on penetrometer resistance. J Geotech Geoenviron Eng 137:695–703. doi: 10.1061/(ASCE)GT.1943-5606.0000480 CrossRefGoogle Scholar
  34. 34.
    Phuong NTV, van Tol AF, Elkadi ASK, Rohe A (2016) Numerical investigation of pile installation effects in sand using material point method. Comput Geotech 73:58–71. doi: 10.1016/j.compgeo.2015.11.012 CrossRefGoogle Scholar
  35. 35.
    Randolph M, Hope S (2004) Effect of cone velocity on cone resistance and excess pore pressures. In: Proceedings of the international symposium engineering practice and performance of soft depositsGoogle Scholar
  36. 36.
    Randolph M, Wroth C (1979) An analytical solution for the consolidation around a driven pile. Int J Numer Anal Methods Geomech 3:217–229CrossRefzbMATHGoogle Scholar
  37. 37.
    Robertson P, Sully J, Woeller D, Lunne T, Powell J, Gillespie D (1992) Estimating coefficient of consolidation from piezocone tests. Can Geotech J 29:539–550CrossRefGoogle Scholar
  38. 38.
    Roscoe KH, Burland JB (1968) On the generalised stress–strain behaviour of wet clay. In: Heyman J, Leckie FA (eds) Engineering plasticity. Cambridge University Press, Cambridge, pp 535–609Google Scholar
  39. 39.
    Schneider J, Lehane BM, Schnaid F (2007) Velocity effects on piezocone measurements in normally and over consolidated clays. Int J Phys Model Geotech 7:23–34Google Scholar
  40. 40.
    Silva MF, White DJ, Bolton MD (2006) An analytical study of the effect of penetration rate on piezocone tests in clay. Int J Numer Anal Methods Geomech 30(6):501–527CrossRefzbMATHGoogle Scholar
  41. 41.
    Soga K, Alonso E, Yerro A, Kumar K, Bandara S (2016) Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method. Géotechnique 66(3):248–273CrossRefGoogle Scholar
  42. 42.
    Sulsky D, Chen Z, Schreyer HL (1994) A particle method for history-dependent materials. Comput Methods Appl Mech Eng 118:179–196MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Teh C, Houlsby G (1991) An analytical study of the cone penetration test in clay. Geotechnique. doi: 10.1016/0148-9062(91)91308-E Google Scholar
  44. 44.
    Torstensson BA (1977) The pore pressure probe. Nord Geotek Mote 34:1–34Google Scholar
  45. 45.
    Vaughan PR, Lemos LJL (2000) Clay–interface shear resistance. Géotechnique 50:55–64. doi: 10.1680/geot.2000.50.1.55 CrossRefGoogle Scholar
  46. 46.
    Vermeer PA, Yuan Y, Beuth L, Bonnier P (2009) Application of interface elements with the Material Point Method. In: Proceedings of the 18th international conference on computer methods in mechanics, vol 18. Polish Academy of Sciences, pp 477–478Google Scholar
  47. 47.
    Wieckowski Z (2001) Analysis of granular flow by the Material Point Method. Eur Conf Comput MechGoogle Scholar
  48. 48.
    Wieckowski Z, Youn S, Yeon J (1999) A particle-in-cell solution to the silo discharging problem. Int J Numer Methods Eng 45:1203–1225CrossRefzbMATHGoogle Scholar
  49. 49.
    Yerro A, Alonso E, Pinyol N (2013) The Material Point Method: a promising computational tool in geotechnics. In: Proceedings of the 18th international conference on soil mechanics and geotechnical engineering. Paris, pp 853–856Google Scholar
  50. 50.
    Yerro A, Alonso EE, Pinyol NM (2015) The material point method for unsaturated soils. Geotechnique 65:201–217CrossRefGoogle Scholar
  51. 51.
    Yi JT, Randolph MF, Goh SH, Lee FH (2012) A numerical study of cone penetration in fine-grained soils allowing for consolidation effects. Géotechnique 62:707–719. doi: 10.1680/geot.8.P.155 CrossRefGoogle Scholar
  52. 52.
    Zhang HW, Wang KP, Chen Z (2009) Material point method for dynamic analysis of saturated porous media under external contact/impact of solid bodies. Comput Methods Appl Mech Eng 198:1456–1472. doi: 10.1016/j.cma.2008.12.006 CrossRefzbMATHGoogle Scholar
  53. 53.
    Zienkiewicz OC, Chan AHC, Pastor M, Schrefler BA, Shiomi T (1999) Computational geomechanics. Wiley, New YorkzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.University of PadovaPaduaItaly

Personalised recommendations