Advertisement

Acta Geotechnica

, Volume 10, Issue 4, pp 497–511 | Cite as

Rock slope stability analysis using photogrammetric data and DFN–DEM modelling

  • V. Bonilla-Sierra
  • L. Scholtès
  • F. V. DonzéEmail author
  • M. K. Elmouttie
Research Paper

Abstract

Structural and mechanical analyses of rock mass are key components for rock slope stability assessment. The complementary use of photogrammetric techniques and numerical models coupling discrete fracture networks with the discrete element method (DEM) provides a methodology that can be applied to assess the mechanical behaviour of realistic three-dimensional (3D) configurations for which fracture persistence cannot be assumed. A real case has been studied to show the complete methodology from the acquisition of the photogrammetric data to the numerical modelling of the potential progressive failure process occurring in the rock mass. Using a 3D mapping system and its associated structural mapping tool Sirovision, the topography and the discontinuity set of an unstable rock block located in a limestone layer of the Mount Néron, located in the French Alps, were imported into a DEM code specially enhanced for the modelling of pre-fractured rock masses. A stability analysis has been carried out, emphasizing the contribution of rock bridge failure through a mixed shear-tensile failure process to the generation of new failure surfaces. This addresses limitations in methodologies using only shear strength reduction method. It is believed that the proposed methodology can strengthen the basis for a more comprehensive stability analysis of complex fractured rock slopes.

Keywords

DFN–DEM numerical modelling Photogrammetry Progressive failure Rock slope stability 

Notes

Acknowledgments

This work has been partly supported by the IMSRN company through a CIFRE grant N°2012/0710, the Research network “Vulnerability of structures undergoing a natural or technological hazard” (Grenoble, France) and the Sirovision project (CSIRO, QCAT, Pullenvale, Australia).

References

  1. 1.
    Belheine N, Plassiard J-P, Donzé F-V, Darve F, Seridi A (2009) Numerical simulation of drained triaxial test using 3D discrete element modelling. Comput Geotech 36:320–331CrossRefGoogle Scholar
  2. 2.
    Birch J (2006) Using 3DM analyst mine mapping suite for rock face characterisation, in ARMA 2006. In: Tonon F, Kottenstett (eds), Proceedings, laser and photogrammetric methods for rock face characterisation workshop, GoldenGoogle Scholar
  3. 3.
    Bottelin P, Jongmans D, Daudon D, Mathy A, Helmstetter A, Bonilla-Sierra V, Cadet H, Amitrano D, Richefeu V, Lorier L, Baillet L, Villard P, Donzé F (2014) Seismic and mechanical studies of the artificially triggered rockfall at the Mount Néron (French Alps, December 2011). Nat Hazards Earth Syst Sci Discuss 2:1505–1557. doi: 10.5194/nhessd-2-1505-2014 CrossRefGoogle Scholar
  4. 4.
    Brideau MA, Yan M, Stead D (2009) The role of tectonic damage and brittle rock fracture in the development of large rock slope failures. Geomorphology 103(1):30–49CrossRefGoogle Scholar
  5. 5.
    Cundall PA, Pierce ME, Mas Ivars D (2008) Quantifying the size effect of rock mass strength, in SHIRMS 2008 In: Potvin Y et al (eds) Proceedings, 1st Southern Hemisphere international rock mechanics symposium, perth, Western Australia, Sept 2008. Nedlands, Western Australia: Australian Centre for Geomechanics, vol 2, pp 3–15Google Scholar
  6. 6.
    Donzé FV, Magnier SA (1995) Formulation of a three-dimensional numerical model of brittle behaviour. Geophys J Int 122:790–802CrossRefGoogle Scholar
  7. 7.
    Einstein HH, Veneziano D, Baecher G, O’reilly KJ (1983) The effect of discontinuity persistence on rock slope stability. Int J Rock Mech Min Sci Geomech Abstr 20(5):227–236 PergamonCrossRefGoogle Scholar
  8. 8.
    Elmouttie MK, Krähenbühl G, Poropat GV, Kelso I (2013) Stochastic representation of sedimentary geology. Rock Mech Rock Eng 47:1–12Google Scholar
  9. 9.
    Esmaieli K, Hadjigeorgiou J, Grenon M (2010) Estimating geometrical and mechanical REV based on synthetic rock mass models at Brunswick Mine. Int J Rock Mech Min Sci 47(6):915–926CrossRefGoogle Scholar
  10. 10.
    Fabre D, Lorier L, Mathy A, Hantz D (2013) Gestion d’un risque rocheux en zone urbanisée: le cas des rochers du Néron près de Grenoble (Isère–France). In: Proceedings of the 1st international conference on Landslides risk, 14-15-16 Mars 2013. Tabarka, pp 149–162Google Scholar
  11. 11.
    Firpo G, Salvini R, Francioni M, Ranjith PG (2011) Use of Digital Terrestrial Photogrammetry in rocky slope stability analysis by Distinct Elements Numerical Methods. Int J Rock Mech Min Sci 48(7):1045–1054CrossRefGoogle Scholar
  12. 12.
    Francioni M, Salvini R, Stead D, Litrico S (2014) A case study integrating remote sensing and distinct element analysis to quarry slope stability assessment in the Monte Altissimo area, Italy, Engineering Geology, ISSN 0013-7952,  10.1016/j.enggeo.2014.09.003
  13. 13.
    Frayssines M, Hantz D (2009) Modeling and back analyzing failures in steep limestone cliffs. Int J Rock Mech Min Sci 46:1115–1123CrossRefGoogle Scholar
  14. 14.
    Gates WCB, Haneberg WC (2012) Comparison of standard structural mapping results to 3D photogrammetric model results: boundary transformer banks rockfall mitigation project, Metaline Falls, Washington, In: Proceedings American Rock mechanics Association, 46th US Rock Mechanics/Geomechanics Symposium held in Chicago, 24–27 June 2012Google Scholar
  15. 15.
    Gidon M, Arnaud H (1978) Carte géologique détaillée de la France à 1/50 000ème, feuille Grenoble, 2ème édition. Bureau de Recherches Géologiques et Minières, OrléansGoogle Scholar
  16. 16.
    Hammah RE, Yacoub TE, Corkum BC, Curran JH (2005) The shear strength reduction method for the generalized Hoek-Brown criterion. Red 2:1Google Scholar
  17. 17.
    Haneberg WC (2008) Using close range terrestrial digital photogrammetry for 3D rock slope modelling and discontinuity mapping in the United States. Bull Eng Geolo Environ 67:457–469CrossRefGoogle Scholar
  18. 18.
    Harthong B, Scholtès L, Donzé FV (2012) Strength characterization of rock masses, using a coupled DEM–DFN model. Geophys J Int 191(2):467–480CrossRefGoogle Scholar
  19. 19.
    Kozicki J, Donzé FV (2008) A new open-source software developed for numerical simulations using discrete modelling methods. Comput Methods Appl Mech Eng 197:4429–4443CrossRefzbMATHGoogle Scholar
  20. 20.
    Kozicki J, Donzé FV (2009) YADE-OPEN DEM: an open-source software using a discrete element method to simulate granular material. Eng Comput 26(7):786–805CrossRefzbMATHGoogle Scholar
  21. 21.
    Mas Ivars D, Pierce ME, Darcel C, Reyes-Montes J, Potyondy DO, Young RP, Cundall PA (2011) The synthetic rock mass approach for jointed rock mass modelling. Int J Rock Mech Min Sci 48(2):219–244CrossRefGoogle Scholar
  22. 22.
    Poropat GV (2006) Remote 3D mapping of Rock mass structure. Laser and photogrammetric methods for Rock face characterization—American Rock Mechanics Association. Golden, 17–18 June 2006Google Scholar
  23. 23.
    Read J (2007) Predicting the behaviour and failure of large rock slopes. Rock mechanics meeting society’s challenges and demands. In: Proceedings of the 1st Canada US Rock mechanics symposium, Vancouver, 1–2 May 2007 pp 1237–1243Google Scholar
  24. 24.
    Read J, Beale G (2014) Guidelines for evaluating water in pit slope stability. CSIRO Publishing, ISBN: 978064310835Google Scholar
  25. 25.
    Read J, Stacey P (2009) Guidelines for open pit slope design. CSIRO publishing, ISBN: 9780643094697, p 512Google Scholar
  26. 26.
    Scholtès L, Donzé FV (2012) Modelling progressive failure in fractured rock masses using a 3D discrete element method. Int J Rock Mech Min Sci 52:18–30CrossRefGoogle Scholar
  27. 27.
    Scholtès L, Donzé FV (2013) DEM model for soft and hard rocks: role of grain interlocking on strength. J Mech Phys Solids 61:352–369CrossRefGoogle Scholar
  28. 28.
    Scholtès L, Donze FV, Khanal M (2011) Scale effects on strength of geomaterials, case study: coal. J Mech Phys Solids 59(5):1131–1146CrossRefzbMATHGoogle Scholar
  29. 29.
    Sirovision, Commonwealth Scientific and Industrial Research Organisation CSIRO (2010) Sirovision 3D imaging mapping system manual version 4.1Google Scholar
  30. 30.
    Šmilauer V, Catalano E, Chareyre B, Dorofenko S, Duriez J, Gladky A, Kozicki J, Modenese C, Scholtès L, Sibille L, Stránsky J, Thoeni K (2010) Yade reference documentation. In: Smilauer V (ed) Yade documentation, 1st Edition. The Yade Project, http://yade-dem.org/doc/
  31. 31.
    Stead D, Eberhardt E, Coggan JS (2006) Developments in the characterization of complex rock slope deformation and failure using numerical modelling techniques. Eng Geol 83(1):217–235CrossRefGoogle Scholar
  32. 32.
    Sturzenegger M, Stead D (2012) The palliser rockslide, Canadian Rocky mountains: characterization and modelling of a stepped failure surface. Geomorphology 138:145–161CrossRefGoogle Scholar
  33. 33.
    Sturzenegger M, Stead D, Elmo D (2011) Terrestrial remote sensing-based estimation of mean trace length, trace intensity and block size/shape. Eng Geol 119:96–111CrossRefGoogle Scholar
  34. 34.
    Zhang L, Einstein HH (2000) Estimating the intensity of rock discontinuities. Int J Rock Mech Min Sci 37:819–837CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • V. Bonilla-Sierra
    • 1
    • 2
  • L. Scholtès
    • 3
  • F. V. Donzé
    • 1
    Email author
  • M. K. Elmouttie
    • 4
  1. 1.Univ. Grenoble Alpes/CNRS, UMR 5521 3SRGrenobleFrance
  2. 2.IMSRN-Ingénierie des Mouvements de Sol et des Risques Naturels, Parc Pré Millet – 680 Rue Aristide BergèsMontbonnotFrance
  3. 3.Université de Lorraine/CNRS/CREGU, UMR 7359 GeoRessourcesVandœuvre-lès-NancyFrance
  4. 4.CSIRO Energy FlagshipPullenvaleAustralia

Personalised recommendations