Acta Geotechnica

, Volume 10, Issue 3, pp 319–332 | Cite as

Numerical modelling of concentrated leak erosion during Hole Erosion Tests

  • Fabienne Mercier
  • S. Bonelli
  • F. Golay
  • F. Anselmet
  • P. Philippe
  • R. Borghi
Research Paper

Abstract

This study focuses on the numerical modelling of the concentrated leak erosion of a cohesive soil by turbulent flow in axisymmetrical geometry, using the Hole Erosion Test (HET). The numerical model is based on the adaptive remeshing of the water/soil interface to ensure the accurate description of the mechanical phenomena occurring near the soil/water interface. The erosion law governing the interface motion is based on two erosion parameters: critical shear stress and the erosion coefficient. The model is first validated in the case of 2D piping erosion caused by laminar flow. Then, the numerical results are compared with the interpretation model of the HET. Three HETs performed on different soils are modelled with rather good accuracy. Lastly, a parametric analysis of the influence of the erosion parameters on erosion kinetics and the evolution of the channel diameter is performed. Finally, after this validation by comparison with both the experimental results and the interpretation of Bonelli et al. [2], our model is now able to accurately reproduce the erosion of a cohesive soil by a concentrated leak. It also provides a detailed description of all the averaged hydrodynamic flow quantities. This detailed description is essential in order to achieve better understanding of erosion processes.

Keywords

Concentrated leak erosion Critical shear stress Erosion coefficient Fluid–structure interaction Turbulent flow modelling 

References

  1. 1.
    Benahmed N, Bonelli S (2012) Investigating concentrated leak erosion behaviour of cohesive soils by performing hole erosion tests. Eur J Environ Civ Eng 16(1):43–58CrossRefGoogle Scholar
  2. 2.
    Bonelli S, Brivois O, Borghi R, Benahmed N (2006) On the modelling of piping erosion. Comptes Rendus de Mécanique 334(8–9):555–559CrossRefMATHGoogle Scholar
  3. 3.
    Bonelli S, Brivois O (2008) The scaling law in the hole erosion test with a constant pressure drop. Int J Numer Anal Meth Geomech 32:1573–1595CrossRefMATHGoogle Scholar
  4. 4.
    Bonelli S, Golay F, Mercier F (2012) Chapter 6 - On the modelling of interface erosion. In: Erosion of geomaterials, Wiley/ISTEGoogle Scholar
  5. 5.
    Brivois O, Bonelli S, Borghi R (2007) Soil erosion in the boundary layer flow along a slope: a theoretical study. Eur J Mech B Fluids 26:707–719CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Chen HC, Patel VC (1988) Near-wall turbulence models for complex flows including separation. AIAA J 26(6):641–648CrossRefGoogle Scholar
  7. 7.
    Donea J, Guiliani S, Halleux JP (1982) An arbitrary lagrangian Eulerian finite element method for transient dynamics fluid structure interaction. Comp Meth Appl Mech Eng 33:689–723CrossRefMATHGoogle Scholar
  8. 8.
    Golay F, Lachouette D, Bonelli S, Seppecher P (2010) Interfacial erosion: a three-dimensional numerical model. Comptes Rendus de Mécanique 338:333–337CrossRefMATHGoogle Scholar
  9. 9.
    Lachouette D, Golay F, Bonelli S (2008) One dimensional modelling of piping flow erosion. Comptes Rendus de Mécanique 336:731–736CrossRefMATHGoogle Scholar
  10. 10.
    Launder BE, Spalding DB (1972) Lectures in mathematical models of turbulence. Academic Press, LondonMATHGoogle Scholar
  11. 11.
    Osher S, Sethian J (1981) Fronts propagating with curvature dependent speed: algorithm foot tracking material interface. J Comput Phys 39:201–225CrossRefGoogle Scholar
  12. 12.
    Ouriemi M, Aussillous P, Médale M, Peysson Y, Guazzelli E (2007) Determination of the critical Shields number for particle erosion in laminar flow. Physics of Fluids 19:061706. doi:10.1063/1.2747677
  13. 13.
    Pope SB (2000) Turbulent Flows. Cambridge University Press, CambridgeCrossRefMATHGoogle Scholar
  14. 14.
    Regazzoni P-L, Marot D (2011) Investigation of interface erosion rate by Jet Erosion Test and statistical analysis. Eur J Environ Civ Eng 15(8):1167–1185CrossRefGoogle Scholar
  15. 15.
    Shih T-H, Liou WW, Shabbir A, Yang Z, Zhu J (1995) A new k-epsilon eddy-viscosity model for high Reynolds number turbulent flows: model development and validation. Comput Fluids 24(3):227–238CrossRefMATHGoogle Scholar
  16. 16.
    Vardoulakis I, Stavropoulou M, Papanastasiou P (1996) Hydromechanical aspects of sand production problem. Transp Porous Media 22:225–244CrossRefGoogle Scholar
  17. 17.
    Wan CF, Fell R (2004) Laboratory tests on the rate of piping erosion of soils in embankment dams. J Geotech Test J 27(3):295–303Google Scholar
  18. 18.
    Wolfshtein M (1969) The velocity and temperature distribution of one-dimensional flow with turbulence augmentation and pressure gradient. Int J Heat Mass Transf 12:301–318CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Fabienne Mercier
    • 1
    • 2
  • S. Bonelli
    • 1
  • F. Golay
    • 3
  • F. Anselmet
    • 4
    • 5
  • P. Philippe
    • 1
  • R. Borghi
    • 5
  1. 1.IRSTEAAix-en-Provence Cedex 5France
  2. 2.geophyConsult, Savoie TechnolacLe Bourget du Lac CedexFrance
  3. 3.ImathLa GardeFrance
  4. 4.IRPHEMarseille Cedex 13France
  5. 5.ECMMarseille Cedex 20France

Personalised recommendations