Advertisement

Acta Geotechnica

, Volume 10, Issue 3, pp 357–368 | Cite as

A micro-mechanical approach for the study of contact erosion

  • S. A. Galindo-Torres
  • A. Scheuermann
  • H. B. Mühlhaus
  • D. J. Williams
Research Paper

Abstract

In the present paper, a simulation framework is presented coupling the mechanics of fluids and solids to study the contact erosion phenomenon. The fluid is represented by the lattice Boltzmann method (LBM), and the soil particles are modelled using the discrete element method (DEM). The coupling law considers accurately the momentum transfer between both phases. The scheme is validated by running simulations of the drag coefficient and the Magnus effect for spheres and comparing the observations with results found in the literature. Once validated, a soil composed of particles of two distinct sizes is simulated by the DEM and then hydraulically loaded with an LBM fluid. It is observed how the hydraulic gradient compromises the stability of the soil by pushing the smaller particles into the voids between the largest ones. The hydraulic gradient is more pronounced in the areas occupied by the smallest particles due to a reduced constriction size, which at the same time increases the buoyancy acting on them. At the mixing zone, where both particle sizes coexist, the fluid transfers its momentum to the small particles, increasing the erosion rate in the process. Moreover, the particles show an increase in their angular velocity at the mixing zone, which implies that the small particles roll over the large ones, greatly reducing the friction between them. The results offer new insights into the erosion and suffusion processes, which could be used to better predict and design structures on hydraulically loaded soils.

Keywords

Contact erosion Discrete element method Lattice Boltzmann method 

Notes

Acknowledgement

The presented research is part of the Discovery Project (DP120102188) Hydraulic erosion of granular structures: Experiments and computational simulations funded by the Australian Research Council. The simulations were based on the Mechsys 2 open source library and carried out using the Macondo Cluster from the School of Civil Engineering at the University of Queensland.

Supplementary material

11440_2013_282_MOESM1_ESM.wmv (6 mb)
WMV (6128 KB)

References

  1. 1.
    Abdelhamid Y, El Shamy U (2013) Pore-scale modeling of surface erosion in a particle bed. Int J Numer Anal Methods Geomecha. doi: 10.1002/nag.2201
  2. 2.
    Belheine N, Plassiard J, Donzé F, Darve F, Seridi A (2009) Numerical simulation of drained triaxial test using 3D discrete element modeling. Comput Geotech 36(1-2):320–331CrossRefGoogle Scholar
  3. 3.
    Buick J, Greated C (2000) Gravity in a lattice boltzmann model. Phys Rev E 61(5):5307CrossRefGoogle Scholar
  4. 4.
    Cundall P, Strack O (1979) A discrete numerical model for granular assemblies. Géotechnique 29(1):47–65Google Scholar
  5. 5.
    Feng Y, Han K, Owen D (2007) Coupled lattice boltzmann method and discrete element modelling of particle transport in turbulent fluid flows: computational issues. Int J Numer Methods Eng 72(9):1111–1134CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Feng Y, Han K, Owen D (2010) Combined three-dimensional lattice boltzmann method and discrete element method for modelling fluid–particle interactions with experimental assessment. Int J Numer Methods Eng 81(2):229–245MATHMathSciNetGoogle Scholar
  7. 7.
    Galindo-Torres S (2013) A coupled discrete element lattice boltzmann method for the simulation of fluid solid interaction with particles of general shapes. Comput Methods Appl Mech Eng 265(0):107–119. doi: 10.1016/j.cma.2013.06.004 CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Galindo-Torres S, Pedroso D (2010) Molecular dynamics simulations of complex-shaped particles using Voronoi-based spheropolyhedra. Phys Rev E, Stat, Non-linear Soft Matter Phys 81(6 Pt 1):061,303CrossRefGoogle Scholar
  9. 9.
    Galindo-Torres S, Pedroso D, Williams D, Li L (2012) Breaking processes in three-dimensional bonded granular materials with general shapes. Comput Phys Commun 183(2):266–277. doi: 10.1016/j.cpc.2011.10.001 CrossRefGoogle Scholar
  10. 10.
    Galindo-Torres S, Pedroso D, Williams D, Mhlhaus H (2013) Strength of non-spherical particles with anisotropic geometries under triaxial and shearing loading configurations. Granular Matter 1–12. doi: 10.1007/s10035-013-0428-6
  11. 11.
    Galindo-Torres S, Scheuermann A, Li L, Pedroso D, Williams D (2013) A lattice boltzmann model for studying transient effects during imbibition-drainage cycles in unsaturated soils. Comput Phys Commun 184(4):1086–1093. doi: 10.1016/j.cpc.2012.11.015 CrossRefMathSciNetGoogle Scholar
  12. 12.
    Galindo-Torres SA, Scheuermann A, Li L (2012) Numerical study on the permeability in a tensorial form for laminar flow in anisotropic porous media. Phys Rev E 86:046,306. doi: 10.1103/PhysRevE.86.046306 CrossRefGoogle Scholar
  13. 13.
    Han Y, Cundall PA (2013) LBM-DEM modeling of fluid-solid interaction in porous media. Int J Numer Anal Methods Geomech 37(10):1391–1407. doi: 10.1002/nag.2096 CrossRefGoogle Scholar
  14. 14.
    He X, Luo L (1997) Lattice boltzmann model for the incompressible Navier–stokes equation. J Stat Phys 88(3):927–944CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Hecht M, Harting J (2010) Implementation of on-site velocity boundary conditions for d3q19 lattice boltzmann simulations. J Stat Mech: Theory Exp 2010, P01,018Google Scholar
  16. 16.
    Holdych DJ (2003) Lattice boltzmann methods for diffuse and mobile interfaces. ProQuest dissertations and theses 165–165Google Scholar
  17. 17.
    Hölzer A, Sommerfeld M (2009) Lattice boltzmann simulations to determine drag, lift and torque acting on non-spherical particles. Comput Fluids 38(3):572–589CrossRefGoogle Scholar
  18. 18.
    Leonardi C, Owen D, Feng Y (2011) Numerical rheometry of bulk materials using a power law fluid and the lattice boltzmann method. J Non-Newtonian Fluid Mech 166(12):628–638CrossRefMATHGoogle Scholar
  19. 19.
    Luding S (2008) Cohesive, frictional powders: contact models for tension. Granular Matter 10(4):235–246CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Martys NS, Chen H (1996) Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice boltzmann method. Phys Rev E 53:743–750. doi: 10.1103/PhysRevE.53.743 CrossRefGoogle Scholar
  21. 21.
    Noble D, Torczynski J (1998) A lattice-boltzmann method for partially saturated computational cells. Int J Modern Phys C 9(08):1189–1201CrossRefGoogle Scholar
  22. 22.
    Owen D, Leonardi C, Feng Y (2010) An efficient framework for fluid–structure interaction using the lattice boltzmann method and immersed moving boundaries. Int J Numer Methods Eng 87(1-5):66–95CrossRefMathSciNetGoogle Scholar
  23. 23.
    Qian Y, d’Humieres D, Lallemand P (1992) Lattice bgk models for navier-stokes equation. EPL (Europhys Lett) 17:479CrossRefMATHGoogle Scholar
  24. 24.
    Rapaport D (2004) The art of molecular dynamics simulation. Cambridge university press, CambridgeCrossRefMATHGoogle Scholar
  25. 25.
    Scheuermann A, Bittner T, Bieberstein A, Mülhaus HB (2007) Measurement of porosity distributions during erosion experiments using spatial time domain reflectometry (spatial tdr). ICSE6Google Scholar
  26. 26.
    Steeb H, Diebels S, et al. (2007) Modeling internal erosion in porous media. ASCEGoogle Scholar
  27. 27.
    Sukop M, Thorne D (2006) Lattice Boltzmann modeling: an introduction for geoscientists and engineers. Springer, BerlinGoogle Scholar
  28. 28.
    Sun W, Kuhn MR, Rudnicki JW (2013) A multiscale DEM–LBM analysis on permeability evolutions inside a dilatant shear band. Acta Geotechnica 8(5):465–480Google Scholar
  29. 29.
    Torczynski JR, Noble DR (1998) A lattice-boltzmann method for partially saturated computational cells. Int J Modern Phys C 09(08):1189–1201. doi: 10.1142/S0129183198001084 CrossRefGoogle Scholar
  30. 30.
    Vardoulakis I (2004) Fluidisation in artesian flow conditions: hydromechanically stable granular media. Géotech 54(2):117–130CrossRefGoogle Scholar
  31. 31.
    Wang Y, Abe S, Latham S, Mora P (2006) Implementation of particle-scale rotation in the 3-D lattice solid model. Pure Appl Geophys 163(9):1769–1785CrossRefGoogle Scholar
  32. 32.
    White F (1991) Viscous fluid flow, vol 66. McGraw-Hill, New YorkGoogle Scholar
  33. 33.
    Zhao J, Shan T (2013) Coupled cfd-dem simulation of fluid-particle interaction in geomechanics. Powder Technol 239(0):248–258. doi: 10.1016/j.powtec.2013.02.003 CrossRefGoogle Scholar
  34. 34.
    Zhu H, Zhou Z, Yang R, Yu A (2007) Discrete particle simulation of particulate systems: theoretical developments. Chem Eng Sci 62(13):3378–3396. doi: 10.1016/j.ces.2006.12.089 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • S. A. Galindo-Torres
    • 2
    • 1
  • A. Scheuermann
    • 2
  • H. B. Mühlhaus
    • 3
  • D. J. Williams
    • 2
  1. 1.National Centre for Groundwater Research and Training, School of Civil Engineering, The University of QueenslandBrisbaneAustralia
  2. 2.Geotechnical Engineering Centre, School of Civil EngineeringThe University of QueenslandBrisbaneAustralia
  3. 3.Earth System Science Computational CentreThe University of QueenslandBrisbaneAustralia

Personalised recommendations