Acta Geotechnica

, Volume 9, Issue 3, pp 455–467

# Effects of soil nonlinearity on the active length of piles embedded in cohesionless soil: model studies

Research Paper

## Keywords

Active length Dynamic analysis Fixed-head pile Local nonlinearity Shaking table

## Abbreviations

$$C_{\text{u}}$$

Coefficient of uniformity

$$d$$

Diameter of pile

$$D_{60,30,10}$$

Particle size parameters for soil

$$e_{\hbox{max} ,\hbox{min} }$$

Maximum/minimum void ratio

$$E_{\text{p}}$$

Young’s modulus of pile

$${{E_{\text{p}} } \mathord{\left/ {\vphantom {{E_{\text{p}} } {E_{{{\text{s}} - {\text{eq}}}} }}} \right. \kern-0pt} {E_{{{\text{s}} - {\text{eq}}}} }}$$

Elasticity contrast

$$E_{\text{s}}$$

Young’s modulus of soil at a depth equal to the diameter of pile

$$E_{{{\text{s}} - {\text{eq}}}}$$

Equivalent Young’s modulus of soil

$$E_{\text{s}}^{{{\text{low}} - {\text{strain}}}}$$

Low-strain modulus of elasticity of soil at a depth equal to the diameter of pile

$$f_{\text{n}}$$

Natural frequency

$$G$$

Shear modulus of soil

$$G_{0}$$

Initial shear modulus of soil

$$G_{\text{m}}$$

Shear modulus of model

$$G_{\text{p}}$$

Shear modulus of prototype

$$G_{\text{s}}$$

Specific gravity of soil

$$H$$

Height of soil layer

$$L$$

Length of pile

$$L/d$$

Slenderness ratio of pile

$$l_{\text{d}}$$

Dynamic active length of pile

$$l_{\text{s}}$$

Static active length of pile

$$q$$

Applied acceleration amplitude in m/s2

$$s$$

Shape factor

$$u$$

$$V_{\text{s}}$$

Shear wave velocity in soil

$$\lambda$$

Geometric scaling ratio of the model to prototype

$$\eta$$

Density scaling ratio of the model to prototype

$$\omega_{\text{m}}$$

Circular frequency of model

$$\omega_{\text{p}}$$

Circular frequency of prototype

$$\gamma_{\text{m}}$$

Dynamic strain in model

$$\gamma_{\text{p}}$$

Dynamic strain in prototype

$$\rho_{\text{s}}$$

Density of soil

$$\rho_{\text{p}}$$

Density of pile

$$\varphi$$

Friction angle of soil

## References

1. 1.
Matlock H, Reese LC (1960) Generalized solutions for laterally loaded piles. J Soil Mech Found Div ASCE 86(SM5):63–94Google Scholar
2. 2.
Matlock H (1970) Correlations for design of laterally loaded piles in soft clay. In: Proceedings of the 2nd annual offshore technology conference, paper no. 1207, Houston, pp 577–594Google Scholar
3. 3.
Saitoh M (2010) Effect of local nonlinearity in cohesionless soil on optimal radius minimizing fixed-head pile bending by inertial and kinematic interactions. Acta Geotech 5(4):273–286
4. 4.
Banerjee PK, Davies TG (1978) The behavior of axially and laterally loaded single piles embedded in nonhomogeneous soils. Geotechnique 28(3):309–326
5. 5.
Poulos HG (1971) Behavior of laterally loaded piles: I—Single piles. J Soil Mech Found Div ASCE 97(5):711–731Google Scholar
6. 6.
Basu D, Salgado R, Prezzi M (2009) A continuum-based model for analysis of laterally loaded piles in layered soil. Géotechnique 59(2):127–140
7. 7.
Kuhlemeyer RL (1979) Static and dynamic laterally loaded piles. J Geotech Eng ASCE 105(2):289–304Google Scholar
8. 8.
Randolph MF (1981) The response of flexible piles to lateral loading. Geotechnique 31(2):247–259
9. 9.
Achmus M, Thieken K (2010) On the behavior of piles in non-cohesive soil under combined horizontal and vertical loading. Acta Geotech 5(3):199–210
10. 10.
Dobry R, Vicente E, O’Rouke MJ, Roesset R (1982) Horizontal stiffness and damping of single piles. J Geotech Eng Div ASCE 108(3):439–459Google Scholar
11. 11.
Poulos HG, Hull TS (1989) The role of analytical geomechanics in foundation engineering. In: Foundation engineering: current principles and practice (GSP 22). ASCE, pp 1578–1606 Google Scholar
12. 12.
Kulhawy F, Chen Y (1995) A thirty year perspective of Brom’s lateral loading models, as applied to drilled shafts. In: Proceedings of Bengt Broms symposium in geotechnical engineering, Singapore, pp 225–240Google Scholar
13. 13.
Wang MC, Liao WP (1987) Active length of laterally loaded piles. J Geotech Eng ASCE 113(9):1044–1048
14. 14.
Velez A, George G, Krishnan R (1983) Lateral dynamic response of constrained head piles. J Geotech Eng ASCE 109(8):1063–1081
15. 15.
Gazetas G, Dobry R (1984) Horizontal response of piles in layered soils. J Geotech Eng ASCE 110(1):20–40
16. 16.
Krishnan R, Gazetas G, Velez A (1983) Static and dynamic lateral deflexion of piles in non-homogenous soil stratum. Geotechnique 33(3):307–325
17. 17.
Boominathan A, Ayothiraman R (2007) An experimental study on static and dynamic bending behavior of piles in soft clay. Geotech Geol Eng 25(2):177–189
18. 18.
Rocha M (1957) The possibility of solving soil mechanics problems by the use of models. In: Proceedings of 4th international conference on soil mechanics, London, vol 1, pp 183–188Google Scholar
19. 19.
Roscoe KH (1968) Soils and model tests. Proc Inst Mech Eng J Strain Anal Eng Des 3(1):57–64Google Scholar
20. 20.
Kagawa T (1978) On the similitude in model vibration tests of earth-structures. Proc Jpn Soc Civil Eng 275:69–77
21. 21.
Iai S (1989) Similitude for shaking table tests on soil-structure-fluid model in 1 g gravitational field. Jpn Soc Soil Mech Found Eng Soils Found 29(1):105–119Google Scholar
22. 22.
Kokusho T, Iwatate T (1979) Scaled model tests and numerical analyses on nonlinear dynamic response of soft grounds. Proc Jpn Soc Civil Eng 285:57–67
23. 23.
Reinsch CH (1971) Smoothing by spline functions II. Numer Math 16(5):451–454
24. 24.
Ishida T et al (1981) Static and dynamic mechanical properties of materials for model tests (Gifu Sand) under low confining stress. Research report of electrical power center research institute, no. 380045Google Scholar
25. 25.
Richart FE, Hall JR, Woods RD (1970) Vibrations of soils and foundations. Prentice-Hall, New JerseyGoogle Scholar
26. 26.
Pecker A (1995) Validation of small strain properties from recorded weak seismic motions. Soil Dyn Earthq Eng 14(6):399–408
27. 27.
Reese LC, Impe WFV (2001) Single piles and pile groups under lateral loading. A.A. Balkema, Great BritainGoogle Scholar
28. 28.
Kishida, H. and Nakai. S. (1977) Large deflection of a single pile under horizontal load. In: Proceedings of the 9th international conference on soil mechanics and foundation engineering, Tokyo, pp 87–92Google Scholar

## Authors and Affiliations

• C. S. Goit
• 1
• M. Saitoh
• 1
• H. Oikawa
• 1
• H. Kawakami
• 1
1. 1.Graduate School of Science and EngineeringSaitama UniversitySaitamaJapan