Acta Geotechnica

, Volume 9, Issue 1, pp 81–86 | Cite as

Toward physical aspects affecting a possible leakage of geologically stored CO2 into the shallow subsurface

  • Ashok SinghEmail author
  • Jens Olaf Delfs
  • Uwe Jens Görke
  • Olaf. Kolditz
Research Paper


In geological formations, migration of CO2 plume is very complex and irregular. To make CO2 capture and storage technology feasible, it is important to quantify CO2 amount associated with possible leakage through natural occurring faults and fractures in geologic medium. Present work examines the fracture aperture effect on CO2 migration due to free convection. Numerical results reveal that fracture with larger-aperture intensify CO2 leakage. Mathematical formulation and equations of state for the mixture are implemented within the object-oriented finite element code OpenGeoSys developed by the authors. The volume translated Peng–Robinson equation of state is used for material properties of CO2 and water.


Fracture OpenGeoSys Free convection Sorption Leakage Translated volume 



We acknowledge the funding by the German Federal Ministry of Education and Research (BMBF) within the framework of the CO2BENCH (FKZ 03G0797D) project as a part of the Special Program GEOTECHNOLOGIEN.


  1. 1.
    Ahlers J, Gmehling J (2001) Development of a universal group contribution equation of state: prediction of liquid densities for pure compounds with a volume translated Peng-Robinson equation of state. Fluid Phase Equilib 191:177–188CrossRefGoogle Scholar
  2. 2.
    Bear J (1972) Dynamics of fluid in porous media. Elsevier, New YorkGoogle Scholar
  3. 3.
    Diersch H-JG, Kolditz O (2002) Variable-density flow and transport in porous media: approaches and challenges. Adv Water Resour 25:899–944CrossRefGoogle Scholar
  4. 4.
    Elder JW (1967) Transient convection in a porous medium. J Fluid Mech 27:609–623CrossRefGoogle Scholar
  5. 5.
    Kolditz O, Bauer S, Bilke L, Böttcher N, Delfs JO, Fischer T, Görke UJ, Kalbacher T, Kosakowski G, McDermott CI, Park CH, Radu F, Rink K, Shao H, Shao HB, Sun F, Sun YY, Singh AK, Taron J, Walther M, Wang W, Watanabe N, Wu N, Xie M, Xu W, Zehner B (2012) OpenGeoSys: an open source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environ Earth Sci 67(2):589–599CrossRefGoogle Scholar
  6. 6.
    Kolditz O, Shao H, Wang W (2012) Benchmarks and examples for thermo-hydro mechanical/chemical processes in porous media, 1st edn. Springer, BerlinCrossRefGoogle Scholar
  7. 7.
    Murphy HD (1979) Convective instabilities in vertical fractures and faults. J Geophy Res 84:6121–6130CrossRefGoogle Scholar
  8. 8.
    Pan L, Oldenburg CN, Wu Y, Pruess K (2009) Wellbore flow model for carbon dioxide and brine. Energy Procedia 1:71–78CrossRefGoogle Scholar
  9. 9.
    Peng DY, Robinson DB (1976) A new two-constant equation of state. Ind Eng Chem Fundam 15:59–64CrossRefzbMATHGoogle Scholar
  10. 10.
    Prasad A, Simmons CT (2003) Unstable density-driven flow in heterogeneous porous media: a stochastic study of the Elder [1967b] “short heater” problem. Water Resour Res 39:1007. doi: 10.1029/2002WR001290 CrossRefGoogle Scholar
  11. 11.
    Singh AK, Böettcher N, Wang W, Park C-H, Görke U-J, Kolditz O (2011) Non-isothermal effects on two-phase flow in porous medium: CO2 disposal into a saline aquifer. Energy Procedia 4:3889–3895CrossRefGoogle Scholar
  12. 12.
    Shi M (2005) Characterizing heterogeneity in low-permeability strata and its control on fluid flow and solute transport by thermohaline free convection. Unpublished Ph.D. thesis, University of Texas at Austin 229 ppGoogle Scholar
  13. 13.
    Shikaze SG, Sudicky EA, Schwartz FW (1998) Density-dependent solute transport in discretely-fractured geologic media: is prediction possible? J Contamin Hydrol 34:273–291CrossRefGoogle Scholar
  14. 14.
    Tsai J-C, Chen Y-P (1998) Application of a volume translated Peng-Robinson equation of state on vapore liquid equilibrium calculations. Fluid Phase Equilib 145:193–215CrossRefGoogle Scholar
  15. 15.
    Taylor GI (1954) Diffusion and mass transport in tubes. Proc Phys Soc B 67 (12):857–869Google Scholar
  16. 16.
    Wooding RA (1957) Steady state free thermal convection of liquid in a saturated permeable medium. J Fluid Mech 2:273–285CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ashok Singh
    • 1
    Email author
  • Jens Olaf Delfs
    • 1
    • 2
  • Uwe Jens Görke
    • 1
  • Olaf. Kolditz
    • 1
    • 3
  1. 1.Helmholtz Centre for Environmental Research-UFZLeipzigGermany
  2. 2.Water and Earth System Science Research Centre (WESS)TübingenGermany
  3. 3.University of Technology DresdenDresdenGermany

Personalised recommendations