Acta Geotechnica

, Volume 8, Issue 4, pp 355–371 | Cite as

Numerical modeling and inverse parameter estimation of the large-scale mass movement Gradenbach in Carinthia (Austria)

  • Jörg MeierEmail author
  • Michael Moser
  • Maria Datcheva
  • Tom Schanz
Research Paper


This paper deals with the inverse problem of using time-displacement monitoring data to determine the material parameters of a numerical model of a large-scale mass movement. A finite element model for simulating the mechanical behavior is presented for the Gradenbach landslide in Carinthia, Austria. Particular attention is paid to the calibration of the constitutive relationships, which represent a prerequisite for a realistic quantitative analysis. After a short introduction to the concept of model-parameter identification, this paper demonstrates how to apply the proposed model identification strategy to determine model parameters for the Gradenbach example. The impact of the amount of reference data available for the inverse model-parameter analysis is evaluated by means of artificial reference data. Subsequently, the numerical model is calibrated using field measurement data. The results obtained are presented, and the benefits and drawbacks of the proposed concept are evaluated.


Mathematical optimization Parameter identification Statistic parameter analysis 



The presented results have been achieved within the framework of the DFG research project “Geotechnical modeling of deep-seated slope movements”. The authors wish to express their gratitude for the financial support by the German Research Association DFG (Deutsche Forschungsgemeinschaft), funded by the sponsoring program SCHA 675/11-2 and MO 248/18-2. M. Datcheva acknowledges the support of the Bulgarian Science Fund under the grant DSAB 02/6. The authors would like to thank Stephen Allen and Marcel Regelous for checking and correcting the English in this paper. The anonymous reviewers are gratefully acknowledged for their valuable remarks and suggestions yielding a significant improvement of the paper.


  1. 1.
    Abaqus reference manual, Version 6.6-1Google Scholar
  2. 2.
    Ampferer O (1939) Über einige Formen der Bergzerreißung. Sitzungsberichte Akademie der Wissenschaften Wien, Math. Naturwissenschaftliche KI., Abt. I 14:1–14Google Scholar
  3. 3.
    Blanc A, Durville J-L, Follacci J-P, Gaudin B, Pincent B (1987) Méthodes de surveillance d’un glissement de terrain de très grande ampleur: la Clapière, Alpes Maritimes, France. Bull Int Assoc Eng Geol 35:37–44CrossRefGoogle Scholar
  4. 4.
    Bonnard C, Noverraz F, Dupraz H (1996) Long-term movements of substabilized versants and climatic changes in the Swiss Alps. In: Senneset K (ed) Proceedings of the 7th international symposium on landslides, vol 3. Balkema, Rotterdam, pp 1525–1530Google Scholar
  5. 5.
    Borja RI, Liu X, White JA (2012) Multiphysics hillslope processes triggering landslides. Acta Geotech 7:261–269. doi: 10.1007/s11440-012-0175-6 CrossRefGoogle Scholar
  6. 6.
    Brückl E, Brunner FK, Kraus K (2006) Kinematics of a deep-seated landslide derived from photogrammetric, GPS and geophysical data. Eng Geol 88:149–159CrossRefGoogle Scholar
  7. 7.
    Brückl E, Brückl J (2006) Geophysical models of the Lesachriegel and Gradenbach deep-seated mass-movements (Schober Range, Austria). Eng Geol 83:1–3CrossRefGoogle Scholar
  8. 8.
    Calvello M, Finno RJ (2002) Calibration of soil models by inverse analysis. In: Pande GN, Pietruszczak S (eds) Numerical models in geomechanics NUMOG VIII. Balkema, Rotterdam, pp 107–116CrossRefGoogle Scholar
  9. 9.
    Calvello M, Finno RJ (2004) Selecting parameters to optimization model calibration by inverse analysis. Comput Geotech 31:411–425CrossRefGoogle Scholar
  10. 10.
    Cheng YM, Lansivaara T, Wei WB (2007) Two-dimensional slope stability analysis by limit equilibrium and strength reduction methods. Comput Geotech 34:137–150CrossRefGoogle Scholar
  11. 11.
    Chugh AK (2003) On the boundary conditions in slope stability analysis. Int J Numer Anal Methods Geomech 27:905–926. doi: 10.1002/nag.305 zbMATHCrossRefGoogle Scholar
  12. 12.
    Clerc M (2005) Binary particle swarm optimisers: toolbox, derivations, and mathematical insights. (
  13. 13.
    Cui L, Sheng D (2006) Genetic algorithms in probabilistic finite element analysis of geotechnical problems. Comput Geotech 32:555–563CrossRefGoogle Scholar
  14. 14.
    Deng JH, Lee CF (2001) Displacement back analysis for a steep slope at the Three Gorges Project site. Int J Rock Mech Min Sci 38(2):259–268CrossRefGoogle Scholar
  15. 15.
    Deng JH, Tham LG, Lee CF, Yang ZY (2007) Three-dimensional stability evaluation of a preexisting landslide with multiple sliding directions by the strength-reduction technique. Can Geotech J 44:343–354CrossRefGoogle Scholar
  16. 16.
    Eberhardt E, Bonzanigo L, Loew S (2007) Long-term investigation of a deep-seated creeping landslide in crystalline rock. Part II. Mitigation measures and numerical modelling of deep drainage at Campo Vallemaggia. Can Geotech J 44(10):1181–1199CrossRefGoogle Scholar
  17. 17.
    Eberhardt E, Stead D, Coggan JS (2004) Numerical analysis of initiation and progressive failure in natural rock slopes—the 1991 Randa rockslide. Int J Rock Mech Min Sci 41(1):69–87CrossRefGoogle Scholar
  18. 18.
    Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micromachine and Human Science, Nagoya, pp 39–43Google Scholar
  19. 19.
    Finsterle S (2000) Demonstration of optimization techniques for groundwater plume remediation. Earth Sciences Division, Lawrence Berkeley National Laboratory, University of California, BerkeleyCrossRefGoogle Scholar
  20. 20.
    Feng X-T, Chen B-R, Yang C, Zhou H, Ding X (2005) Identification of visco-elastic models for rocks using genetic programming coupled with the modified particle swarm optimization algorithm. Int J Rock Mech Min Sci 43(5):789–801. doi: 10.1016/j.ijrmms.2005.12.010 Google Scholar
  21. 21.
    Forlati F, Gioda G, Scavia C (2001) Finite element analysis of a deep-seated slope deformation. Rock Mech Rock Eng 34(2):135–159CrossRefGoogle Scholar
  22. 22.
    Fürlinger W (1973) Böschungsverhalten in zweischarig geklüftetem Material. Mitteilungen der Gesellschaft für Geologie und Bergbaustudien 22:233–242Google Scholar
  23. 23.
    Gens A, Ledesma A, Alonso EE (1996) Estimation of parameters in geotechnical backanalysis—II. Application to a tunnel excavation problem. Elsevier Science. Comput Geotech 18(1):29–46CrossRefGoogle Scholar
  24. 24.
    Griffiths DV, Marquez RM (2007) Three-dimensional slope stability analysis by elasto-plastic finite elements. Geotechnique 57(6):537–546CrossRefGoogle Scholar
  25. 25.
    Interreg 1 (1996) Risques générés par les grands mouvements de versant, étude comparative de 4 sites des Alpes franco-italiennes. Programme Interreg 1 France-Italie. Regione Piemonte-University J. Fourier, LIRIGM Grenoble, p 207Google Scholar
  26. 26.
    Kalkani EC, Piteau DR (1976) Finite element analysis of toppling failure at Hell’s Gate Bluffs, British Columbia. Bull Int Assoc Eng Geol XIII 4:315–327Google Scholar
  27. 27.
    Kennedy J, Eberhart R (1995) Particle swarm optimization. Proceedings of the IEEE International Conference on Neural Networks, IEEE Press, Piscataway, NJ, pp 1942–1948Google Scholar
  28. 28.
    Krahn J, Morgenstern NR (1976) Mechanics of the Frank Slide. Rock Eng 2:309–332Google Scholar
  29. 29.
    Ledesma A, Gens A, Alonso EE (1996) Estimation of parameters in geotechnical backanalysis—I. Maximum likelihood approach. Elsevier Science. Comput Geotech 18(1):1–27CrossRefGoogle Scholar
  30. 30.
    Ledesma A, Gens A, Alonso EE (1996) Parameter and variance estimation in geotechnical backanalysis using prior information. Int J Numer Anal Meth Geomech 20:119–141zbMATHCrossRefGoogle Scholar
  31. 31.
    Li X (2007) Finite element analysis of slope stability using a nonlinear failure criterion. Comput Geotech 34:127–136CrossRefGoogle Scholar
  32. 32.
    Mahr T, Nemcok A (1977) Deep-seated creep deformations in the crystalline cores of the Tatry Mts. Bull Int Assoc Eng Geol 16:104–106CrossRefGoogle Scholar
  33. 33.
    Malecot Y, Flavigny E, Boulon M (2004) Inverse analysis of soil parameters for finite element simulation of geotechnical structures: pressuremeter test and excavation problem. In: Brinkgreve, Schad, Schweiger, Willand (eds) Proceedings Symposium on Geotechnical Innovations. Verlag Glückauf, Essen, pp 659–675Google Scholar
  34. 34.
    Manly BFJ (1944) Multivariate statistical methods—a primer, 3rd edn. Chapman & Hall/CRC, LondonGoogle Scholar
  35. 35.
    Matouš K, Lepš M, Zeman J, Šejnoha M (2000) Applying genetic algorithms to selected topics commonly encountered in engineering practice. Comput Methods Appl Mech Eng 190:1629–1650zbMATHCrossRefGoogle Scholar
  36. 36.
    Meier J, Datcheva MD, Moser M, Schanz T (2009) Identification of constitutive and geometrical parameters for slope instability modelling—application to mountain-splitting area reutte/tyrol (Austria). Aust J Earth Sci 102/2:81–89 ISSN 2072-7151Google Scholar
  37. 37.
    Meier J, Datcheva M, Schanz T (2007) Identification of constitutive and geometrical parameters of numerical models with application in tunnelling. ECCOMAS Thematic Conference on Computational Methods in Tunnelling (EURO:TUN 2007), WienGoogle Scholar
  38. 38.
    Meier J, Schädler W, Borgatti L, Corsini A, Schanz T (2008) Inverse parameter identification technique using PSO algorithm applied to geotechnical modeling. J Artif Evol Appl, doi: 10.1155/2008/574613, p 14.
  39. 39.
    Meier J (2008) Parameterbestimmung mittels inverser Verfahren für geotechnische Problemstellungen. Dissertation, Verlag der Bauhaus-Universität Weimar, Schriftenreihe Geotechnik, Issue 19Google Scholar
  40. 40.
    Moser M, Kiefer J (1988) Die hydrologischen Verhältnisse und ihre Beziehungen zur Kinematik im Bereich der Talzuschubsmasse Gradenbach/Kärnten. Steirische Beiträge zur Hydrogeologie 39:95–115Google Scholar
  41. 41.
    Moser M (1994) Geotechnics of large-scale slope movements (“Talzuschübe”) in alpine regions. Proceedings 7th IAEG Congress, Lisboa, pp 1533–1542Google Scholar
  42. 42.
    Moser M (1996) The time-dependent behaviour of sagging of mountain slopes. Proceeding of the 7th International Symposium on Landslides, Balkema, Rotterdam, pp 809–814Google Scholar
  43. 43.
    Mühlhaus HB, Shi J, Olsen-Kettle L, Moresi L (2011) A double slip non-coaxial flow rule for viscous-plastic Cosserat materials. Acta Geotech 6:219–229. doi: 10.1007/s11440-011-0148-1 CrossRefGoogle Scholar
  44. 44.
    Noverraz F (1996) Sagging or deep-seated creep: fiction or reality? In: Senneset K. (ed) Proceedings of the 7th international symposium on landslides, vol 2. Balkema, Rotterdam, pp 821–828Google Scholar
  45. 45.
    Radbruch-Hall DH (1978) Gravitational creep of rock masses on slopes. In: Voight B (ed), “Rockslides and Avalanches—Natural Phenomena”, Development in Geotechnical Engineering, vol 14A. pp 693–705Google Scholar
  46. 46.
    Schanz T, Zimmerer M, Datcheva M, Meier J (2006) Identification of constitutive parameters for numerical models via inverse approach. Felsbau—Rock and Soil Engineering—Journal for Engineering Geology, Geomechanics and Tunneling 2/2006:11–21Google Scholar
  47. 47.
    Schön S (2007) Affine distortion of small GPS networks with large height differences. GPS solutions, Springer, vol 11, pp 107–117Google Scholar
  48. 48.
    Stini J (1941) Unsere Täler wachsen zu. Geologie und Bauwesen 13:71–79Google Scholar
  49. 49.
    Tacher L, Bonnard Ch, Laloui L, Parriaux A (2005) Modelling the behaviour of a large landslide with respect to hydrogeological and geomechanical parameter heterogeneity. Landslides 2:3–14CrossRefGoogle Scholar
  50. 50.
    Weidner S, Moser M, Lang E (1998) Influence of hydrology on sagging of mountain slopes (“Talzuschübe”)—New results of time series analysis. Proceedings 8th International IAEG Congress, Vancouver, pp 1259–1266Google Scholar
  51. 51.
    Ziegler HJ (1982) Die Hangbewegungen im Lugnez, am Heinzenberg und bei Schuders (Graubünden). Geologie und Geomechanik. Unpublished dissertation, Bern, p 106Google Scholar
  52. 52.
    Zienkiewicz OC, Humpheson C, Lewis RW (1975) Associated and non-associated visco-plasticity and plasticity in soil mechanics. Geotechnique 25(4):671–689CrossRefGoogle Scholar
  53. 53.
    Zienkiewicz OC, Pande GN (1977) Time-dependent multilaminate model of rocks—a numerical study of deformation and failure of rock masses. Int J Numer Anal Methods Geomech 1:219–247CrossRefGoogle Scholar
  54. 54.
    Zischinsky U (1966) Bewegungsbilder instabiler Talflanken. Mitteilungen der Gesellschaft für Geologie und Bergbaustudien 17:127–167Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jörg Meier
    • 1
    Email author
  • Michael Moser
    • 2
  • Maria Datcheva
    • 3
  • Tom Schanz
    • 4
  1. 1.Gruner AGBaselSwitzerland
  2. 2.Department of Applied GeologyUniversität Erlangen-NürnbergErlangenGermany
  3. 3.Institute of MechanicsBulgarian Academy of SciencesSofiaBulgaria
  4. 4.Chair for Foundation Engineering, Soil and Rock MechanicsRuhr-Universität BochumBochumGermany

Personalised recommendations